Contents

PACTS Overview ... v

Introduction .. 1

Design Needs of Pedestrians .. 6

Sidewalks .. 8
 Zones in the Sidewalk Corridor ... 9
 Sidewalk Widths .. 10
 Sidewalk Obstructions and Driveway Ramps ... 11
 Pedestrian Access Through Construction Areas ... 12

Pedestrians at Intersections .. 13
 Marked Crosswalks .. 14
 Median Refuge Islands .. 15
 Minimizing Curb Radii ... 16
 Curb Extensions ... 17
 Advance Stop Bar ... 18
 ADA Compliant Curb Ramps ... 19

Crossing Beacons and Signals .. 20
 Pedestrians at Signalized Crossings ... 21
 Active Warning Beacons .. 22
 Hybrid Beacon for Mid-Block Crossing .. 23

Design Needs of Bicyclists ... 24

Facility Selection ... 27

Bicycle Facility Selection Guidelines ... 28
 Facility Classification .. 29
 Facility Matrices .. 30

Shared Roadways ... 31
 Signed Shared Roadway .. 32
 Marked Shared Roadway .. 33
 Marked Shared Roadway .. 34
 Advisory Bike Lane ... 35

Neighborhood Byways .. 36
 Neighborhood Byway .. 37
Route Selection ... 38
Basic Treatments .. 39
Vertical Traffic Calming .. 40
Horizontal Traffic Calming .. 41
Traffic Diversion.. 42
Minor Intersection Treatments ... 43
Major Intersection Treatments ... 44
Offset Intersection Treatments .. 45

Retrofitting Existing Streets to add Bikeways ... 46
 Roadway Widening ... 47
 Lane Narrowing .. 48
 Lane Reconfiguration .. 49
 Parking Reduction ... 50

Separated Bikeways .. 51
 Shoulder Bikeways .. 52
 Bike Lane without On-Street Parking ... 53
 Bike Lane Adjacent to On-Street Parallel Parking .. 54
 Contra-flow Bike Lane on One-way Street ... 55
 Buffered Bike Lane .. 56
 Uphill Bicycle Climbing Lane ... 57
 Colored Bike Lanes ... 58

Cycle Tracks ... 59
 Cycle Track Separation and Placement .. 60
 Driveways and Minor Street Crossings .. 61
 Major Street Crossings .. 62
 Shared Use Paths Along Roadways .. 63

Separated Bikeways at Intersections ... 64
 Bike Box .. 65
 Bike Lanes at Right Turn Only Lanes ... 66
 Colored Bike Lanes in Conflict Areas ... 67
 Combined Bike Lane / Turn Lane ... 68
 Intersection Crossing Markings .. 69
 Two-Stage Turn Boxes .. 70

Signalization .. 71
Bikeway Maintenance ... 75

Greenways and Off-Street Facilities .. 75
- General Design Practices .. 76
- Greenways in Abandoned Rail Corridors .. 77
- Greenways in Existing Active Rail Corridors .. 78
- Local Neighborhood Accessways .. 79

Path/Roadway Crossings .. 80
- Marked/Unsignalized Crossings ... 81
- Active Warning Beacons ... 82
- Route Users to Signalized Crossings .. 83
- Signalized/Controlled Crossings .. 84
- Undercrossings .. 85
- Overcrossings .. 86

Bicycle Support Facilities ... 87
- Bicycle Racks .. 88
- On-Street Bicycle Corral ... 89
- Bicycle Lockers .. 90
- Bicycle Access Through Construction Areas ... 91

Bikeway Maintenance ... 92
- Sweeping ... 93
- Signage .. 93
- Roadway Surface ... 94
- Pavement Overlays .. 94
- Drainage Grates .. 95
- Gutter to Pavement Transition .. 95
- Landscaping .. 96
- Maintenance Management Plan .. 96
PACTS Overview

Guidelines Summary

Purpose

Introduction

This technical handbook is intended to assist the cities and towns in the PACTS region in the selection and design of bicycle facilities. The following chapters pull together best practices by facility type from public agencies and municipalities nationwide. Within the design chapters, treatments are covered within a single sheet tabular format relaying important design information and discussion, example photos, schematics (if applicable), and existing summary guidance from current or upcoming draft standards. Existing standards are referenced throughout and should be the first source of information when seeking to implement any of the treatments featured here.

Guiding Principles

The following are guiding principles for these bicycle design guidelines:

• **The walking and bicycling environment should be safe.** All bicycling and walking routes should be physically safe and perceived as safe by all users. Safe means minimal conflicts with external factors, such as noise, vehicular traffic and protruding architectural elements. Safe also means routes are clear and well marked with appropriate pavement markings and directional signage.

• **The pedestrian and bicycle network should be accessible.** Sidewalks, shared-use paths, bike routes and crosswalks should permit the mobility of residents of all ages and abilities. The pedestrian and bicycle network should employ principles of universal design. Bicyclists have a range of skill levels, and facilities should be designed with a goal of providing for inexperienced/recreational bicyclists (especially children and seniors) to the greatest extent possible.

• **Pedestrian and bicycle network improvements should be economical.** Pedestrian and bicycle improvements should achieve the maximum benefit for their cost, including initial cost and maintenance cost, as well as a reduced reliance on more expensive modes of transportation. Where possible, improvements in the right-of-way should stimulate, reinforce and connect with adjacent private improvements.

• **The pedestrian and bicycle network should connect to places people want to go.** The pedestrian and bicycle network should provide continuous direct routes and convenient connections between destinations such as homes, schools, shopping areas, public services, recreational opportunities and transit. A complete network of on-street bicycling facilities should connect seamlessly to existing and proposed multi-use trails to complete recreational and commuting routes.

• **The walking and bicycling environment should be clear and easy to use.** Sidewalks Shared-use paths and crossings should allow all people to easily find a direct route to a destination with minimal delays, regardless of whether these persons have mobility, sensory, or cognitive disability impairments. All roads are legal for the use of pedestrians and bicyclists (except freeways, from which each is prohibited unless a separate facility on that right of way is provided). This means that most streets are bicycle facilities and should be designed, marked and maintained accordingly.

• **The walking and bicycling environment should be attractive and enhance community livability.** Good design should integrate with and support the development of complementary uses and should encourage preservation and construction of art, landscaping and other items that add value to communities. These components might include open spaces such as plazas, courtyards and squares, and amenities like street furniture, banners, art, plantings and special paving. These along with historical elements and cultural references, should promote a sense of place. Public activities should be encouraged and the municipal code should permit commercial activities such as dining, vending and advertising when they do not interfere with safety and accessibility.

• **Design guidelines are flexible and should be applied using professional judgment.** This document references specific national guidelines for bicycle and pedestrian facility design, as well as a number of design treatments not specifically covered under current guidelines. Statutory and regulatory guidance may change. For this reason, the guidance and recommendations in this document function to complement other resources considered during a design process, and in all cases sound engineering judgment should be used.
National Standards

The Federal Highway Administration’s Manual on Uniform Traffic Control Devices (MUTCD) defines the standards used by road managers nationwide to install and maintain traffic control devices on all public streets, highways, bikeways, and private roads open to public traffic. The MUTCD is the primary source for guidance on lane striping requirements, signal warrants, and recommended signage and pavement markings.

To further clarify the MUTCD, the FHWA created a table of contemporary bicycle facilities that lists various bicycle-related signs, markings, signals, and other treatments and identifies their official status (e.g., can be implemented, currently experimental). See Bicycle Facilities and the Manual on Uniform Traffic Control Devices.1

Bikeway treatments not explicitly covered by the MUTCD are often subject to experiments, interpretations and official rulings by the FHWA. The MUTCD Official Rulings is a resource that allows website visitors to obtain information about these supplementary materials. Copies of various documents (such as incoming request letters, response letters from the FHWA, progress reports, and final reports) are available on this website.2

American Association of State Highway and Transportation Officials (AASHTO) Guide for the Development of Bicycle Facilities, updated in June 2012 provides guidance on dimensions, use, and layout of specific bicycle facilities. The standards and guidelines presented by AASHTO provide basic information, such as minimum sidewalk widths, bicycle lane dimensions, detailed striping requirements and recommended signage and pavement markings.

The National Association of City Transportation Officials’ (NACTO) 2012 Urban Bikeway Design Guide3 is the newest publication of nationally recognized bikeway design standards, and offers guidance on the current state of the practice designs. The NACTO Urban Bikeway Design Guide is based on current practices in the best cycling cities in the world. The intent of the guide is to offer substantive guidance for cities seeking to improve bicycle transportation in places where competing demands for the use of the right of way present unique challenges. All of the NACTO Urban Bikeway Design Guide treatments are in use internationally and in many cities around the US.

Offering similar guidance for pedestrian design, the 2004 AASHTO Guide for the Planning, Design and Operation of Pedestrian Facilities provides comprehensive guidance on planning and designing for people on foot.

Meeting the requirements of the Americans with Disabilities Act (ADA) is an important part of any bicycle and pedestrian facility project. The United States Access Board’s proposed Public Rights-of-Way Accessibility Guidelines4 (PROWAG) and the 2010 ADA Standards for Accessible Design5 (2010 Standards) contain standards and guidance for the construction of accessible facilities. This includes requirements for sidewalk curb ramps, slope requirements, and pedestrian railings along stairs.

Some of these treatments are not directly referenced in the current versions of the AASHTO Guide or the MUTCD, although many of the elements of these treatments are found within these documents. In all cases, engineering judgment is recommended to ensure that the application makes sense for the context of each treatment, given the many complexities of urban streets.

3. http://nacto.org/cities-for-cycling/design-guide/
Additional References

In addition to the previously described national standards, the basic bicycle and pedestrian design principals outlined in this chapter are derived from the documents listed below. Many of these documents are available online and provide a wealth of public information and resources.

Additional US Federal Guidelines

Best Practice Documents

Glossary

The following list is comprised of common terms, acronyms and concepts used in bicycle transportation planning, design and operation.
AASHTO – American Association of State Highway and Transportation Officials

Accessible route – A continuous route on private property that is accessible to persons with disabilities. There must be at least one accessible route linking the public sidewalk to each accessible building.

Actuated signal – A signal where the length of the phases for different traffic movements is adjusted for demand by a signal controller using information from detectors.

ADA – Americans with Disabilities Act of 1990; broad legislation mandating provision of access to employment, services, and the built environment to those with disabilities.

At-grade crossing – A junction where bicycle path or sidewalk users cross a roadway over the same surface as motor vehicle traffic, as opposed to a grade-separated crossing where users cross over or under the roadway using a bridge or tunnel.

Audible pedestrian signals – Pedestrian signal indicators that provide an audible signal to assist visually impaired pedestrians in crossing the street.

Bicycle boulevard - See neighborhood greenway. Streets designed to give bicyclists priority by reducing motor vehicle volumes and speeds using barriers or other design elements, in order to enhance bicycle safety and enjoyment.

Bicycle facilities - A general term used to describe all types of bicycle-related infrastructure including linear bikeways and other provisions to accommodate or encourage bicycling, including bike racks and lockers, bikeways, and showers at employment destinations.

Bike lane - A striped lane for one-way bike travel on a street or highway.

Bicycle level of service (BLOS) – Indication of bicyclist comfort level for specific roadway geometries and traffic conditions. Roadways with a better (lower) score are more attractive (and usually safer) for bicyclists.

Bike path – A paved pathway separated from motorized vehicular traffic by an open space or barrier and either within the highway right-of-way or within an independent alignment. Bike paths may be used by pedestrians, bicyclists, skaters, wheelchair users, runners, and other non-motorized users.

Bike route – A shared roadway specifically identified for use by bicyclists, providing a superior route based on traffic volumes and speeds, street width, directness, and/or cross-street priority; designated by signs only.

Bikeway – A generic term for any road, street, path or way that in some manner is specifically designed for bicycle travel, regardless of whether such facilities are designated for the exclusive use of bicycles or are to be shared with other transportation modes.

Bollard – Post used to restrict motor vehicle use of space dedicated to bicyclists and/or pedestrians.

Clearance interval – The length of time that the DON’T WALK indication is flashing on a pedestrian signal indication.

Clearance, lateral – Width required for safe passage of people riding bicycles as measured on a horizontal plane.

Clearance, vertical – Height required for safe passage of people riding bicycles as measured on a vertical plane.

Crosswalk – Any portion of a roadway at an intersection or elsewhere that is distinctly indicated for pedestrian crossing. Where there are no pavement markings, there is a crosswalk at each leg of every intersection, defined by law as the prolongation or connection of the lateral lines of the sidewalks.

Curb extension – An area where the sidewalk and curb are extended into the parking lane, usually in order to shorten pedestrian crossing distance. Also called "bulb-out" or "curb bulb."

Curb ramp – A combined ramp and landing to accomplish a change of level at a curb in order to provide access to pedestrians using wheelchairs.

Directional signs – Signs typically placed at road and bikeway junctions (decision points) to guide people riding bicycles toward a destination or experience.

Geometry – The vertical and horizontal characteristics of a transportation facility, typically defined in terms of gradient, radius, and superelevation.

Grade separation – Vertical separation of travelways through use of a bridge or tunnel so that traffic conflicts are minimized.

Grade-separated crossing – A bridge or tunnel allowing pedestrians and bicyclists to cross a major roadway without conflict.

HCM – Highway Capacity Manual
Level of service (LOS) - Term for the measurement of how well traffic “flows” on a roadway system or how well an intersection functions.

Loop detector - A device placed under the pavement at intersections to detect a vehicle or bicycle and subsequently trigger a signal to turn green.

Medians – Area in the center of the roadway that separates directional traffic; may provide a striped crossing and halfway point for pedestrians (also can be effective traffic calming design). Medians may be level with the surrounding roadway or “raised” using curb and/or gutter. Medians may include landscaping, concrete, paint/striping or any combination thereof.

MUTCD – Manual on Uniform Traffic Control Devices

Neighborhood Byways – Streets designed to give bicyclists priority by limiting or prohibiting motor vehicle through traffic by using barriers or other design elements, in order to enhance bicycle safety and enjoyment. See bicycle boulevard.

Paved shoulder – The edge of the roadway beyond the outer stripe edge that provides a place for people riding bicycles. It only functions well for bicyclists if it is wide enough (4-5 feet), free of debris, and does not contain rumble strips or other obstructions.

Pavement marking – An assortment of markings on the surface of the pavement that provide directions to motorists and other road users as to the proper use of the road (the MUTCD determines these standard markings).

Pedestrian – a person afoot; a person operating a pushcart; a person riding on, or pulling a coaster wagon, sled, scooter, tricycle, bicycle with wheels less than 14 inches in diameter, or a similar conveyance; a person on roller skates, skateboard, wheelchair or a baby in a carriage.

Pedestrian signal indication – the lighted WALK/DON’T WALK (or walking man/hand) signal that indicates the pedestrian phase.

Refuge islands – Corner raised triangles or medians, used by pedestrians and bicyclists at intersections or mid-block crossings for assistance with crossing wide streets, especially where motor vehicle right turn lanes exist.

Right-of-way (ROW) - The right of one vehicle, bicycle or pedestrian to proceed in a lawful manner in preference to another vehicle, bicycle, or pedestrian. Also the strip of property in which a transportation facility or other facility is built.

Shared Lane Marking (SLM) or Sharrow – A pavement marking that designates roadway space to be shared between drivers and people riding bicycles.

Shared roadway - A roadway where bicyclists and motor vehicles share the same space with no striped bike lane. Any roadway where bicycles are not prohibited by law (i.e. interstate highways or freeways) is a shared roadway.

Shared use path – A paved right-of-way that permits more than one type of user, such as a trail designated for use by both pedestrians and bicyclists.

Sidewalk – An improved facility intended to provide for pedestrian movement; usually, but not always, located in the public right-of-way adjacent to a roadway. Typically constructed of concrete.

Sight distance - The distance a person can see along an unobstructed line of sight.

Traffic calming - Changes in street alignment, installation of barrier, and other physical measures to reduce traffic speeds and/or cut-through traffic volume in the interest of street safety, livability, and other public purposes.

Traffic control devices - Signs, signals or other fixtures, whether permanent or temporary, placed on or adjacent to a travelway by authority of a public body having jurisdiction to regulate, warn, or guide traffic.

Traffic volume - The number of vehicles that pass a specific point in a specific amount of time (hour, day, year).

Wide curb lane – A 14 foot (or greater) wide outside lane adjacent to the curb of a roadway that provides space for bicyclists to ride to the right of motor vehicles. Also referred to as a “wide outside lane”. If adjacent to parking, 22 foot wide pavement may also be considered a wide curb lane.
Design Needs of Pedestrians

Types of Pedestrians

Pedestrians have a variety of characteristics and the transportation network should accommodate a variety of needs, abilities, and possible impairments. Age is one major factor that affects pedestrians' physical characteristics, walking speed, and environmental perception. Children have low eye height and walk at slower speeds than adults. They also perceive the environment differently at various stages of their cognitive development. Older adults walk more slowly and may require assistive devices for walking stability, sight, and hearing. The table below summarizes common pedestrian characteristics for various age groups.

The MUTCD recommends a normal walking speed of three and a half feet per second when calculating the pedestrian clearance interval at traffic signals. The walking speed can drop to three feet per second for areas with older populations and persons with mobility impairments. While the type and degree of mobility impairment varies greatly across the population, the transportation system should accommodate these users to the greatest reasonable extent.

Pedestrian Characteristics by Age

<table>
<thead>
<tr>
<th>Age</th>
<th>Characteristics</th>
</tr>
</thead>
</table>
| 0-4 | Learning to walk
Requires constant adult supervision
Developing peripheral vision and depth perception |
| 5-8 | Increasing independence, but still requires supervision
Poor depth perception |
| 9-13 | Susceptible to “dart out” intersection dash
Poor judgment
Sense of invulnerability |
| 14-18 | Improved awareness of traffic environment
Poor judgment |
| 19-40 | Active, fully aware of traffic environment |
| 41-65 | Slowing of reflexes |
| 65+ | Difficulty crossing street
Vision loss
Difficulty hearing vehicles approaching from behind |

The table below summarizes common physical and cognitive impairments, how they affect personal mobility, and recommendations for improved pedestrian-friendly design.

Disabled Pedestrian Design Considerations

<table>
<thead>
<tr>
<th>Impairment</th>
<th>Effect on Mobility</th>
<th>Design Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheelchair and Scooter Users</td>
<td>Difficulty propelling over uneven or soft surfaces.</td>
<td>Firm, stable surfaces and structures, including ramps or beveled edges.</td>
</tr>
<tr>
<td></td>
<td>Cross-slopes cause wheelchairs to veer downhill.</td>
<td>Cross-slopes of less than two percent.</td>
</tr>
<tr>
<td></td>
<td>Require wider path of travel.</td>
<td>Sufficient width and maneuvering space.</td>
</tr>
<tr>
<td>Walking Aid Users</td>
<td>Difficulty negotiating steep grades and cross slopes; decreased stability.</td>
<td>Smooth, non-slippery travel surface.</td>
</tr>
<tr>
<td></td>
<td>Slower walking speed and reduced endurance; reduced ability to react.</td>
<td>Longer pedestrian signal cycles, shorter crossing distances, median refuges, and street furniture.</td>
</tr>
<tr>
<td>Hearing Impairment</td>
<td>Less able to detect oncoming hazards at locations with limited sight lines (e.g. driveways, angled intersections, channelized right turn lanes) and complex intersections.</td>
<td>Longer pedestrian signal cycles, clear sight distances, highly visible pedestrian signals and markings.</td>
</tr>
<tr>
<td>Vision Impairment</td>
<td>Limited perception of path ahead and obstacles; reliance on memory; reliance on non-visual indicators (e.g. sound and texture).</td>
<td>Accessible text (larger print and raised text), accessible pedestrian signals (APS), guide strips and detectable warning surfaces, safety barriers, and lighting.</td>
</tr>
<tr>
<td>Cognitive Impairment</td>
<td>Varies greatly. Can affect ability to perceive, recognize, understand, interpret, and respond to information.</td>
<td>Signs with pictures, universal symbols, and colors, rather than text.</td>
</tr>
</tbody>
</table>
Sidewalks

Sidewalks are the most fundamental element of the walking network, as they provide an area for pedestrian travel that is separated from vehicle traffic. Sidewalks are typically constructed out of concrete and are separated from the roadway by a curb or gutter and sometimes a landscaped planting strip area. Sidewalks are a common application in both urban and suburban environments.

Attributes of well-designed sidewalks include the following:

Accessibility: A network of sidewalks should be accessible to all users.

Adequate width: Two people should be able to walk side-by-side and pass a third comfortably. Different walking speeds should be possible. In areas of intense pedestrian use, sidewalks should accommodate the high volume of walkers.

Safety: Design features of the sidewalk should allow pedestrians to have a sense of security and predictability. Sidewalk users should not feel they are at risk due to the presence of adjacent traffic.

Continuity: Walking routes should be obvious and should not require pedestrians to travel out of their way unnecessarily.

Landsaping: Plantings and street trees should contribute to the overall psychological and visual comfort of sidewalk users, and be designed in a manner that contributes to the safety of people.

Drainage: Sidewalks should be well graded to minimize standing water.

Social space: There should be places for standing, visiting, and sitting. The sidewalk area should be a place where adults and children can safely participate in public life.

Quality of place: Sidewalks should contribute to the character of neighborhoods and business districts.
Zones in the Sidewalk Corridor

Description

Sidewalks are the most fundamental element of the walking network, as they provide an area for pedestrian travel separated from vehicle traffic. A variety of considerations are important in sidewalk design. Providing adequate and accessible facilities can lead to increased numbers of people walking, improved safety, and the creation of social space.

Discussion

Sidewalks should be more than areas to travel; they should provide places for people to interact. There should be places for standing, visiting, and sitting. Sidewalks should contribute to the character of neighborhoods and business districts, strengthen their identity, and be an area where adults and children can safely participate in public life.

Additional References and Guidelines

Materials and Maintenance

Sidewalks are typically constructed out of concrete and are separated from the roadway by a curb or gutter and sometimes a landscaped space. Colored, patterned, or stamped concrete can add distinctive visual appeal.
Sidewalk Widths

Description
The width and design of sidewalks will vary depending on street context, functional classification, and pedestrian demand. Below are preferred widths of each sidewalk zone according to general street type. Standardizing sidewalk guidelines for different areas of the city, dependent on the above listed factors, ensures a minimum level of quality for all sidewalks.

<table>
<thead>
<tr>
<th>Street Classification</th>
<th>Parking Lane/Enhancement Zone</th>
<th>Furnishing Zone</th>
<th>Pedestrian Through Zone</th>
<th>Frontage Zone</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Streets</td>
<td>Varies</td>
<td>2 - 5 feet</td>
<td>4 - 6 feet</td>
<td>N/A</td>
<td>6 - 11 feet</td>
</tr>
<tr>
<td>Commercial Areas</td>
<td>Varies</td>
<td>4 - 6 feet</td>
<td>6 - 12 feet</td>
<td>2.5 - 10 feet</td>
<td>11 - 28 feet</td>
</tr>
<tr>
<td>Arterials and Collectors</td>
<td>Varies</td>
<td>2 - 6 feet</td>
<td>4 - 8 feet</td>
<td>2.5 - 5 feet</td>
<td>8 - 19 feet</td>
</tr>
</tbody>
</table>

Areas that have significant accumulations of snow during the winter may prefer a wider furnishing zone for snow storage.

Discussion
It is important to provide adequate width along a sidewalk corridor. Two people should be able to walk side-by-side and pass a third comfortably. In areas of high demand, sidewalks should contain adequate width to accommodate the high volumes and different walking speeds of pedestrians. The Americans with Disabilities Act requires a 4 foot clear width in the pedestrian zone plus 5 foot passing areas every 200 feet.

Additional References and Guidelines

Materials and Maintenance
Sidewalks are typically constructed out of concrete and are separated from the roadway by a curb or gutter and sometimes a landscaped boulevard. Surfaces must be firm, stable, and slip resistant. Colored, patterned, or stamped concrete can add distinctive visual appeal.
Sidewalk Obstructions and Driveway Ramps

Description
Obstructions to pedestrian travel in the sidewalk corridor typically include driveway ramps, curb ramps, sign posts, utility and signal poles, mailboxes, fire hydrants and street furniture.

Guidance
Reducing the number of accesses reduces the need for special provisions. This strategy should be pursued first. Obstructions should be placed between the sidewalk and the roadway to create a buffer for increased pedestrian comfort.

Discussion
Driveways are a common sidewalk obstruction, especially for wheelchair users. When constraints only allow curb-tight sidewalks, dipping the entire sidewalk at the driveway approaches keeps the cross-slope at a constant grade. However, this may be uncomfortable for pedestrians and could create drainage problems behind the sidewalk.

Additional References and Guidelines

Materials and Maintenance
Sidewalks are typically constructed out of concrete and are separated from the roadway by a curb or gutter and sometimes a landscaped space. Surfaces must be firm, stable, and slip resistant.
Pedestrian Access Through Construction Areas

Description
Measures should be taken to provide for the continuity of a pedestrian’s trip through a construction closure. Only in rare cases should pedestrians be detoured to another street when travel lanes remain open.

Guidance
- Pedestrians should be provided with a safe, accessible, convenient path that replicates as nearly as practical the most desirable characteristics of the existing sidewalks. The alternate circulation path should be parallel to the disrupted pedestrian access route, be located on the same side of the street, and accommodate the disabled.
- The alternate route should have a width of 5 feet minimum, and an additional foot of width for each vertical element along the route.
- In rare cases where access is not available on the same side of the street, the alternate pedestrian route may be located on the opposite side of the street as long as the distance of the disrupted pedestrian route does not exceed 300 feet.
- Signage related to construction activities shall be placed in a location that does not obstruct the path of bicycles or pedestrians, including bicycle lanes, wide curb lanes, or sidewalks.

Discussion
The removal of a pedestrian access route, curb ramp, or pedestrian street crossing, even for a short time, may severely limit or totally preclude pedestrians, especially those with a disability, from navigating in the public right-of-way. It might also preclude access to buildings, facilities, or sites on adjacent properties.

Additional References and Guidelines

Materials and Maintenance
The alternate route should include sidewalks and pedestrian access routes, curb ramps, pedestrian crossings, lighting, and all other elements included in these standards.
Attributes of pedestrian-friendly intersection design include:

Clear Space: Corners should be clear of obstructions. They should also have enough room for curb ramps, for transit stops where appropriate, and for street conversations where pedestrians might congregate.

Visibility: It is critical that pedestrians on the corner have a good view of vehicle travel lanes and that motorists in the travel lanes can easily see waiting pedestrians.

Legibility: Symbols, markings, and signs used at corners should clearly indicate what actions the pedestrian should take.

Accessibility: All corner features, such as curb ramps, landings, call buttons, signs, symbols, markings, and textures, should meet accessibility standards and follow universal design principles.

Separation from Traffic: Corner design and construction should be effective in discouraging turning vehicles from driving over the pedestrian area. Crossing distances should be minimized.

Lighting: Adequate lighting is an important aspect of visibility, legibility, and accessibility.

These attributes will vary with context but should be considered in all design processes. For example, suburban and rural intersections may have limited or no signing. However, legibility regarding appropriate pedestrian movements should still be taken into account during design.
Marked Crosswalks

Description
A marked crosswalk signals to motorists that they must stop for pedestrians and encourages pedestrians to cross at designated locations. Installing crosswalks alone will not necessarily make crossings safer especially on multi-lane roadways.

At mid-block locations, crosswalks can be marked where there is a demand for crossing and there are no nearby marked crosswalks.

Guidance
At signalized intersections, all crosswalks should be marked. At un-signalized intersections where posted speeds are less than 45mph, crosswalks may be marked under the following conditions:

- At a complex intersection, to orient pedestrians in finding their way across.
- At an offset intersection, to show pedestrians the shortest route across traffic with the least exposure to vehicular traffic and traffic conflicts.
- Flashing beacons or RRFBs should be considered, especially along three- or four-lane roadways.
- At an intersection within a school zone on a walking route.

Discussion
Continental or zebra style markings should be used at crossings with high pedestrian use or where vulnerable pedestrians are expected, including: school crossings, across arterial streets for pedestrian-only signals, at mid-block crosswalks, and at intersections where there is expected high pedestrian use and the crossing is not controlled by signals or stop signs.

See Intersection Signalization for a discussion of enhancing pedestrian crossings.

Additional References and Guidelines

Materials and Maintenance
Because the effectiveness of marked crossings depends entirely on their visibility, maintaining marked crossings should be a high priority. Thermoplastic markings offer increased durability than conventional paint.
Median Refuge Islands

Description
Median refuge islands are located at the mid-point of a marked crossing and help improve pedestrian safety by allowing pedestrians to cross one direction of traffic at a time. Refuge islands minimize pedestrian exposure by shortening crossing distance and increasing the number of available gaps for crossing.

Guidance
- Can be applied on any roadway with a left turn center lane or median that is at least 6’ wide.
- Appropriate at signalized or unsignalized crosswalks
- The refuge island must be accessible, preferably with an at-grade passage through the island rather than ramps and landings.
- The island should be at least 6’ wide between travel lanes (to accommodate bikes with trailers and wheelchair users) and at least 20’ long.
- On streets with speeds higher than 25 mph there should also be double centerline marking, reflectors, and “KEEP RIGHT” signage.

If a refuge island is landscaped, the landscaping should not compromise the visibility of pedestrians crossing in the crosswalk. Shrubs and ground plantings should be no higher than 1 ft 6 in.

On multi-lane roadways, consider configuration with active warning beacons for improved yielding compliance.

Discussion

Additional References and Guidelines

Materials and Maintenance
Refuge islands may collect road debris and may require somewhat frequent maintenance. Refuge islands should be visible to snow plow crews and should be kept free of snow berms that block access.
Minimizing Curb Radii

Description
The size of a curb’s radius can have a significant impact on pedestrian comfort and safety. A smaller curb radius provides more pedestrian area at the corner, allows more flexibility in the placement of curb ramps, results in a shorter crossing distance and requires vehicles to slow more on the intersection approach. During the design phase, the chosen radius should be the smallest possible for the circumstances.

Guidance
The radius may be as small as 3 ft where there are no turning movements, or 5 ft where there are turning movements, adequate street width, and a larger effective curb radius created by parking or bike lanes.

Discussion
Several factors govern the choice of curb radius in any given location. These include the desired pedestrian area of the corner, traffic turning movements, street classifications, design vehicle turning radius, intersection geometry, and whether there is parking or a bike lane (or both) between the travel lane and the curb.

Additional References and Guidelines

Materials and Maintenance
Improperly designed curb radii at corners may be subject to damage by large trucks.
Curb Extensions

Description

Curb extensions minimize pedestrian exposure during crossing by shortening crossing distance and giving pedestrians a better chance to see and be seen before committing to crossing. They are appropriate for any crosswalk where it is desirable to shorten the crossing distance and there is a parking lane adjacent to the curb.

Guidance

- In most cases, the curb extensions should be designed to transition between the extended curb and the running curb in the shortest practicable distance.
- For purposes of efficient street sweeping, the minimum radius for the reverse curves of the transition is 10 ft and the two radii should be balanced to be nearly equal.
- Curb extensions should terminate one foot short of the parking lane to maximize bicyclist safety.

Discussion

If there is no parking lane, adding curb extensions may be a problem for bicycle travel and truck or bus turning movements.

Additional References and Guidelines

Materials and Maintenance

Planted curb extensions may be designed as a bioswale, a vegetated system for stormwater management.
Advance Stop Bar

Description

Advance stop bars increase pedestrian comfort and safety by stopping motor vehicles well in advance of marked crosswalks, allowing vehicle operators a better line of sight of pedestrians and giving inner lane motor vehicle traffic time to stop for pedestrians.

Guidance

- On streets with at least two travel lanes in each direction.
- Prior to a marked crosswalk
- In one or both directions of motor vehicle travel
- Recommended 15-50 feet or more in advance of the crosswalk
- A “Stop Here for Pedestrians” sign should accompany the advance stop bar

Discussion

If a bicycle lane is present, mark the advance stop bar to permit bicyclists to stop at the crosswalk ahead of the stop bar.

If the State law requires drivers to YIELD to pedestrians in crosswalks, a Yield Line marking must be used rather than a stop line in these cases.

Additional References and Guidelines

Materials and Maintenance

Because the effectiveness of markings depends entirely on their visibility, maintaining markings should be a high priority.
ADA Compliant Curb Ramps

Description
Curb ramps are the design elements that allow all users to make the transition from the street to the sidewalk. There are a number of factors to be considered in the design and placement of curb ramps at corners. Properly designed curb ramps ensure that the sidewalk is accessible from the roadway. A sidewalk without a curb ramp can be useless to someone in a wheelchair, forcing them back to a driveway and out into the street for access.

Although diagonal curb ramps might save money, they create potential safety and mobility problems for pedestrians, including reduced maneuverability and increased interaction with turning vehicles, particularly in areas with high traffic volumes. Diagonal curb ramp configurations are the least preferred of all options.

Guidance
- The landing at the top of a ramp shall be at least 4 feet long and at least the same width as the ramp itself.
- The ramp shall slope no more than 1:50 (2.0%) in any direction.
- If the ramp runs directly into a crosswalk, the landing at the bottom will be in the roadway.
- If the ramp lands on a dropped landing within the sidewalk or corner area where someone in a wheelchair may have to change direction, the landing must be a minimum of 5’-0” long and at least as wide as the ramp, although a width of 5’-0” is preferred.

Curb ramps shall be located so that they do not project into vehicular traffic lanes, parking spaces, or parking access aisles. Three configurations are illustrated below.

Discussion
The edge of an ADA compliant curb ramp will be marked with a tactile warning device (also known as truncated domes) to alert people with visual impairments to changes in the pedestrian environment. Contrast between the raised tactile device and the surrounding infrastructure is important so that the change is readily evident. These devices are most effective when adjacent to smooth pavement so the difference is easily detected. The devices must provide color contrast so partially sighted people can see them.

Additional References and Guidelines

Materials and Maintenance
It is critical that the interface between a curb ramp and the street be maintained adequately. Asphalt street sections can develop potholes at the foot of the ramp, which can catch the front wheels of a wheelchair.
Crossing Beacons and Signals

Crossing beacons and signals facilitate crossings of roadways for pedestrians and bicyclists. Beacons make crossing intersections safer by clarifying when to enter an intersection and by alerting motorists to the presence of pedestrians and bicyclists.

Flashing amber warning beacons can be utilized at unsignalized intersection crossings. Push buttons, signage, and pavement markings may be used to highlight these facilities for pedestrians, bicyclists and motorists.

Determining which type of signal or beacon to use for a particular intersection depends on a variety of factors. These include speed limits, traffic volumes, and the anticipated levels of pedestrian and bicycle crossing traffic.

An intersection with crossing beacons may reduce stress and delays for a crossing users, and discourage illegal and unsafe crossing maneuvers.
Pedestrians at Signalized Crossings

Description

Pedestrian Signal Head

Pedestrian signal indicators demonstrate to pedestrians when to cross at a signalized crosswalk. All traffic signals should be equipped with pedestrian signal indications except where pedestrian crossing is prohibited by signage.

Countdown pedestrian signals are particularly valuable for pedestrians, as they indicate whether a pedestrian has time to cross the street before the signal phase ends. Countdown signals should be used at all signalized intersections.

Signal Timing

Providing adequate pedestrian crossing time is a critical element of the walking environment at signalized intersections. The MUTCD recommends traffic signal timing to assume a pedestrian walking speed of 4’ per second, meaning that the length of a signal phase with parallel pedestrian movements should provide sufficient time for a pedestrian to safely cross the adjacent street.

At crossings where older pedestrians or pedestrians with disabilities are expected, crossing speeds as low as 3’ per second may be assumed. Special pedestrian phases can be used to provide greater visibility or more crossing time for pedestrians at certain intersections.

In busy pedestrian areas such as downtowns, the pedestrian signal indication should be built into each signal phase, eliminating the requirement for a pedestrian to actuate the signal by pushing a button.

Audible pedestrian traffic signals provide crossing assistance to pedestrians with vision impairment at signalized intersections

Consider the use of a Leading Pedestrian Indication (LPI) to provide additional traffic protected crossing time to pedestrians

Discussion

When push buttons are used, they should be located so that someone in a wheelchair can reach the button from a level area of the sidewalk without deviating significantly from the natural line of travel into the crosswalk, and marked (for example, with arrows) so that it is clear which signal is affected.

In areas with very heavy pedestrian traffic, consider an all-pedestrian signal phase to give pedestrians free passage in the intersection when all motor vehicle traffic movements are stopped.

Additional References and Guidelines

Materials and Maintenance

It is important to repair or replace traffic control equipment before it fails. Consider semi-annual inspections of controller and signal equipment, intersection hardware, and loop detectors.
Active Warning Beacons

Description
Active warning beacons are user actuated illuminated devices designed to increase motor vehicle yielding compliance at crossings of multi lane or high volume roadways.

Types of active warning beacons include conventional circular yellow flashing beacons, in-roadway warning lights, or Rectangular Rapid Flash Beacons (RRFB).

Guidance
- Warning beacons shall not be used at crosswalks controlled by YIELD signs, STOP signs, or traffic signals.
- Warning beacons shall initiate operation based on pedestrian or bicyclist actuation and shall cease operation at a predetermined time after actuation or, with passive detection, after the pedestrian or bicyclist clears the crosswalk.

Discussion
Rectangular rapid flash beacons have the most increased compliance of all the warning beacon enhancement options.

A study of the effectiveness of going from a no-beacon arrangement to a two-beacon RRFB installation increased yielding from 18 percent to 81 percent. A four-beacon arrangement raised compliance to 88 percent. Additional studies over long term installations show little to no decrease in yielding behavior over time.

Additional References and Guidelines

Materials and Maintenance
Depending on power supply, maintenance can be minimal. If solar power is used, RRFBs should run for years without issue.
Hybrid Beacon for Mid-Block Crossing

Description
Though circular yellow flashing beacons or rectangular rapid flashing beacons (RRFBs) are the preference, hybrid beacons (called “HAWK” signals) may be used to improve non-motorized crossings of major streets. A hybrid beacon consists of a signal-head with two red lenses over a single yellow lens on the major street, and a pedestrian signal head for the crosswalk.

Guidance
Consideration of HAWK signals will need to be carefully considered in close coordination with Maine DOT. They may be installed without meeting traffic signal control warrants if roadway speed and volumes are excessive for comfortable pedestrian crossings.

- If installed within a signal system, signal engineers should evaluate the need for the hybrid signal to be coordinated with other signals.
- Parking and other sight obstructions should be prohibited for at least 100 feet in advance of and at least 20 feet beyond the marked crosswalk to provide adequate sight distance.

Discussion
Hybrid beacon signals are normally activated by push buttons, but may also be triggered by infrared, microwave or video detectors. The maximum delay for activation of the signal should be two minutes, with minimum crossing times determined by the width of the street.

Each crossing, regardless of traffic speed or volume, requires additional review by a registered engineer to identify sight lines, potential impacts on traffic progression, timing with adjacent signals, capacity, and safety.

Additional References and Guidelines

Materials and Maintenance
Hybrid beacons are subject to the same maintenance needs and requirements as standard traffic signals. Signing and striping need to be maintained to help users understand any unfamiliar traffic control.
The purpose of this section is to provide the facility designer with an understanding of how bicyclists operate and how their bicycle influences that operation. Bicyclists, by nature, are much more affected by poor facility design, construction and maintenance practices than motor vehicle drivers. Bicyclists lack the protection from the elements and roadway hazards provided by an automobile’s structure and safety features. By understanding the unique characteristics and needs of bicyclists, a facility designer can provide quality facilities and minimize user risk.

Bicycle as a Design Vehicle

Similar to motor vehicles, bicyclists and their bicycles exist in a variety of sizes and configurations. These variations occur in the types of vehicle (such as a conventional bicycle, a recumbent bicycle or a tricycle), and behavioral characteristics (such as the comfort level of the bicyclist). The design of a bikeway should consider reasonably expected bicycle types on the facility and utilize the appropriate dimensions.

The figure below illustrates the operating space and physical dimensions of a typical adult bicyclist, which are the basis for typical facility design. Bicyclists require clear space to operate within a facility. This is why the minimum operating width is greater than the physical dimensions of the bicyclist. Bicyclists prefer five feet or more operating width, although four feet may be minimally acceptable.

Standard Bicycle Rider Dimensions

In addition to the design dimensions of a typical bicycle, there are many other commonly used pedal-driven cycles and accessories to consider when planning and designing bicycle facilities. The most common types include tandem bicycles, recumbent bicycles, and trailer accessories. The figure and table below summarize the typical dimensions for bicycle types.

Bicycle as Design Vehicle - Typical Dimensions

<table>
<thead>
<tr>
<th>Bicycle Type</th>
<th>Feature</th>
<th>Typical Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright Adult Bicyclist</td>
<td>Physical width</td>
<td>2 ft 6 in</td>
</tr>
<tr>
<td></td>
<td>Operating width (Minimum)</td>
<td>4 ft</td>
</tr>
<tr>
<td></td>
<td>Operating width (Preferred)</td>
<td>5 ft</td>
</tr>
<tr>
<td></td>
<td>Physical length</td>
<td>5 ft 10 in</td>
</tr>
<tr>
<td></td>
<td>Physical height of handlebars</td>
<td>3 ft 8 in</td>
</tr>
<tr>
<td></td>
<td>Operating height</td>
<td>8 ft 4 in</td>
</tr>
<tr>
<td></td>
<td>Eye height</td>
<td>5 ft</td>
</tr>
<tr>
<td></td>
<td>Vertical clearance to obstructions (tunnel height, lighting, etc)</td>
<td>10 ft</td>
</tr>
<tr>
<td></td>
<td>Approximate center of gravity</td>
<td>2 ft 9 in - 3 ft 4 in</td>
</tr>
<tr>
<td>Recumbent Bicyclist</td>
<td>Physical length</td>
<td>8 ft</td>
</tr>
<tr>
<td></td>
<td>Eye height</td>
<td>3 ft 10 in</td>
</tr>
<tr>
<td>Tandem Bicyclist</td>
<td>Physical length</td>
<td>8 ft</td>
</tr>
<tr>
<td>Bicyclist with child trailer</td>
<td>Physical length</td>
<td>10 ft</td>
</tr>
<tr>
<td></td>
<td>Physical width</td>
<td>2 ft 8 in</td>
</tr>
<tr>
<td>Adult Tricycle</td>
<td>Physical length</td>
<td>6 ft to 8 ft</td>
</tr>
<tr>
<td></td>
<td>Physical width</td>
<td>2 ft 8 in to 3 ft</td>
</tr>
</tbody>
</table>

Bicycle as Design Vehicle - Design Speed Expectations

<table>
<thead>
<tr>
<th>Bicycle Type</th>
<th>Feature</th>
<th>Typical Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright Adult Bicyclist</td>
<td>Paved level surfacing</td>
<td>15 mph</td>
</tr>
<tr>
<td></td>
<td>Crossing Intersections</td>
<td>10 mph</td>
</tr>
<tr>
<td></td>
<td>Downhill</td>
<td>30 mph</td>
</tr>
<tr>
<td></td>
<td>Uphill</td>
<td>5 - 12 mph</td>
</tr>
<tr>
<td>Recumbent Bicyclist</td>
<td>Paved level surfacing</td>
<td>18 mph</td>
</tr>
</tbody>
</table>

Note: Tandem bicycles and bicyclists with trailers have typical speeds equal to or less than upright adult bicyclists.

Design Speed Expectations

The expected speed that different types of bicyclists can maintain under various conditions also influences the design of facilities such as shared use paths. The table to the right provides typical bicyclist speeds for a variety of conditions.
Types of Bicyclists

It is important to consider bicyclists of all skill levels when creating a non-motorized plan or project. Bicyclist skill level greatly influences expected speeds and behavior, both in separated bikeways and on shared roadways. Bicycle infrastructure should accommodate as many user types as possible, with decisions for separate or parallel facilities based on providing a comfortable experience for the greatest number of people.

The bicycle planning and engineering professions currently use several systems to classify the population, which can assist in understanding the characteristics and infrastructure preferences of different bicyclists. The most conventional framework classifies the “design cyclist” as Advanced, Basic, or Child. A more detailed understanding of the US population as a whole is illustrated in the figure below. Developed by planners in Portland, OR and supported by data collected nationally since 2005, this classification provides the following alternative categories to address varying attitudes towards bicycling in the US:

- **Strong and Fearless** (approximately 1% of population) – Characterized by bicyclists that will typically ride anywhere regardless of roadway conditions or weather. These bicyclists can ride faster than other user types, prefer direct routes and will typically choose roadway connections – even if shared with vehicles – over separate bicycle facilities such as shared use paths.

- **Enthused and Confident** (5-10% of population) - This user group encompasses bicyclists who are fairly comfortable riding on all types of bikeways but usually choose low traffic streets or shared use paths when available. These bicyclists may deviate from a more direct route in favor of a preferred facility type. This group includes all kinds of bicyclists such as commuters, recreationalists, racers and utilitarian bicyclists.

- **Interested but Concerned** (approximately 60% of population) – This user type comprises the bulk of the cycling population and represents bicyclists who typically only ride a bicycle on low traffic streets or multi-use trails under favorable weather conditions. These bicyclists perceive significant barriers to their increased use of cycling, specifically traffic and other safety issues. These people may become “Enthused & Confident” with encouragement, education and experience.

- **No Way, No How** (approximately 30% of population) – Persons in this category are not bicyclists, and perceive severe safety issues with riding in traffic. Some people in this group may eventually become more regular cyclists with time and education. A significant portion of these people will not ride a bicycle under any circumstances.

Facility Selection

85th-percentile speed, design speed, or posted speed (mph). Whichever is greater.
Bicycle Facility Selection Guidelines

This section summarizes the bicycle facility selection typology developed for the PACTS by Alta Planning + Design. The specific facility type that should be provided depends on the surrounding environment (e.g. auto speed and volume, topography, and adjacent land use) and expected bicyclist needs (e.g. bicyclists commuting on a highway versus students riding to school on residential streets).

Facility Selection Guidelines

There are no ‘hard and fast’ rules for determining the most appropriate type of bicycle facility for a particular location – roadway speeds, volumes, right-of-way width, presence of parking, adjacent land uses, and expected bicycle user types are all critical elements of this decision. Studies find that the most significant factors influencing bicycle use are motor vehicle traffic volumes and speeds. Additionally, most bicyclists prefer facilities separated from motor vehicle traffic or located on local roads with low motor vehicle traffic speeds and volumes. Because off-street pathways are physically separated from the roadway, they are perceived as safe and attractive routes for bicyclists who prefer to avoid motor vehicle traffic. Consistent use of treatments and application of bikeway facilities allow users to anticipate whether they would feel comfortable riding on a particular facility, and plan their trips accordingly. This section provides guidance on various factors that affect the type of facilities that should be provided.
Facility Classification

Description
Consistent with bicycle facility classifications throughout the nation, these Bicycle Facility Design Guidelines identify the following classes of facilities by degree of separation from motor vehicle traffic.

Shared Roadways are bikeways where bicyclists and cars operate within the same travel lane, either side by side or in single file depending on roadway configuration. The most basic type of bikeway is a signed shared roadway. This facility provides continuity with other bicycle facilities (usually bike lanes), or designates preferred routes through high-demand corridors.

Shared Roadways may also be designated by pavement markings, signage and other treatments including directional signage, traffic diverters, chicanes, chokers and/or other traffic calming devices to reduce vehicle speeds or volumes. Such treatments often are associated with Neighborhood Byways.

Separated Bikeways, such as bike lanes, use signage and striping to delineate the right-of-way assigned to bicyclists and motorists. Bike lanes encourage predictable movements by both bicyclists and motorists.

Cycle Tracks are exclusive bike facilities that combine the user experience of a separated path with the on-street infrastructure of conventional bike lanes.

Shared Use Paths are facilities separated from roadways for use by bicyclists and pedestrians.
The following matrices illustrate the range of bicycle facilities applicable to various roadway environments, based on the roadway type and desired degree of separation. Engineering judgment, traffic studies, previous municipal planning efforts, community input and local context should be used to refine criteria when developing bicycle facility recommendations for a particular street. In some corridors, it may be desirable to construct facilities to a higher level of treatment than those recommended in relevant planning documents in order to enhance user safety and comfort. In other cases, existing and/or future motor vehicle speeds and volumes may not justify the recommended level of separation, and a less intensive treatment may be acceptable.

Arterial/Highway Bikeway Matrix (without curb and gutter)

- Shared Lane
- Marked Wide Curb Lane
- Shoulder Bikeway
- Wide Shoulder Bikeway
- Cycle Track: protected with barrier
- Shared Use Path

Arterial/Highway Bikeway Matrix (with curb and gutter)

- Marked Wide Curb Lane
- Conventional Bicycle Lane
- Buffered Bicycle Lane
- Cycle Track: at-grade, protected with parking
- Cycle Track: protected with barrier
- Cycle Track: curb separated

Collector Bikeway Matrix

- Shared Lane
- Marked Wide Curb Lane
- Conventional Bicycle Lane
- Wide Bicycle Lane
- Buffered Bicycle Lane
Shared Roadways

On shared roadways, bicyclists and motor vehicles use the same roadway space. These facilities are typically used on roads with low speeds and traffic volumes, however they can be used on higher volume roads with wide outside lanes or shoulders. A motor vehicle driver will usually have to cross over into the adjacent travel lane to pass a bicyclist, unless a wide outside lane or shoulder is provided.

Shared roadways employ a large variety of treatments from simple signage and shared lane markings to more complex treatments including directional signage, traffic diverters, chicanes, chokers, and/or other traffic calming devices to reduce vehicle speeds or volumes.

Neighborhood Byways

Neighborhood byways are a special class of shared roadways designed for a broad spectrum of bicyclists. They are low-volume local streets where motorists and bicyclists share the same travel lane. Treatments for neighborhood byways are selected as necessary to create appropriate automobile volumes and speeds, and to provide safe crossing opportunities of busy streets.
Signed Shared Roadway

Description
Signed Shared Roadways are facilities shared with motor vehicles. They are typically used on roads with low speeds and traffic volumes, however can be used on higher volume roads with wide outside lanes or shoulders. A motor vehicle driver will usually have to cross over into the adjacent travel lane to pass a bicyclist, unless a wide outside lane or shoulder is provided.

Guidance
Lane width varies depending on roadway configuration.

Bicycle Route signage (D11-1) should be applied at intervals frequent enough to keep bicyclists informed of changes in route direction and to remind motorists of the presence of bicyclists. Bike route signs, ideally, would include information related to destination and sense a more effective wayfinding purpose. Commonly, this includes placement at:

- Beginning or end of Bicycle Route.
- At major changes in direction or at intersections with other bicycle routes.
- At intervals along bicycle routes not to exceed ½ mile.

Discussion
Signed Shared Roadways serve either to provide continuity with other bicycle facilities (usually bike lanes) or to designate preferred routes through high-demand corridors.

This configuration differs from a Neighborhood Greenway due to a lack of traffic calming, wayfinding, pavement markings and other enhancements designed to provide a higher level of comfort for a broad spectrum of users.

Additional References and Guidelines

Materials and Maintenance
Maintenance needs for bicycle wayfinding signs are similar to other signs, and will need periodic replacement due to wear.
Marked Shared Roadway

Description
A marked shared roadway is a general purpose travel lane marked with shared lane markings (SLM) used to encourage bicycle travel and proper positioning within the lane.

In constrained conditions, the SLMs are placed in the middle of the lane to discourage unsafe passing by motor vehicles. On a wide outside lane, the SLMs can be used to promote bicycle travel to the right of motor vehicles.

In all conditions, SLMs should be placed outside of the door zone of parked cars.

Guidance
- Generally not appropriate on streets with posted speeds above 35 mph.
- See Shared Lane Marker Placement Matrix for guidance regarding precise placement.
- Use of Bicycles May Use Full Lane is recommended, especially when Shared Lane Markers are placed in the center of the travel lane.

Discussion
Bike Lanes should be considered on roadways with outside travel lanes wider than 15 feet, or where other lane narrowing or removal strategies may provide adequate road space. SLMs shall not be used on shoulders, in designated Bike Lanes, or to designate Bicycle Detection at signalized intersections. (MUTCD 9C.07)

Additional References and Guidelines

Materials and Maintenance
Placing SLMs between vehicle tire tracks will increase the life of the markings and minimize the long-term cost of the treatment.
Marked Shared Roadway

Shared Lane Marking Placement Matrix

<table>
<thead>
<tr>
<th>Parking</th>
<th>Lane Width</th>
<th>Posted Speed</th>
<th><25 mph</th>
<th>30 mph</th>
<th>35 mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Parking (7 - 8')</td>
<td>AASHTO/MUTCH guidelines (any lane width)</td>
<td></td>
<td>11'-0" min. from curb</td>
<td>11'-0" min. from curb</td>
<td>11'-0" min. from curb</td>
</tr>
<tr>
<td></td>
<td><14’</td>
<td></td>
<td>center of travel lane with BMUFL signs</td>
<td>center of travel lane with BMUFL signs</td>
<td>12'-0" from curb</td>
</tr>
<tr>
<td></td>
<td>>14’</td>
<td></td>
<td>12'-0" from curb</td>
<td>12'-0" from curb</td>
<td>12'-0" from curb</td>
</tr>
<tr>
<td>Without Parking</td>
<td>AASHTO/MUTCH guidelines (any lane width)</td>
<td></td>
<td>4'-0" min. from curb</td>
<td>4'-0" min. from curb</td>
<td>4'-0" min. from curb</td>
</tr>
<tr>
<td></td>
<td><14’*</td>
<td></td>
<td>center of travel lane with BMUFL signs</td>
<td>center of travel lane with BMUFL signs</td>
<td>5'-0" from curb</td>
</tr>
<tr>
<td></td>
<td>>14’**</td>
<td></td>
<td>5'-0" from curb</td>
<td>5'-0" from curb</td>
<td>5'-0" from curb</td>
</tr>
</tbody>
</table>

* Shared Lane Markings not recommended on roads with posted speeds >35 mph.

**Includes any shoulder area not used for parking.
Advisory Bike Lane

Description
Advisory bike lanes are bicycle priority areas delineated by dotted white lines. The automobile zone should be configured narrowly enough so that two cars cannot pass each other in both directions without crossing the advisory lane line.

Motorists may enter the bicycle zone when no bicycles are present. Motorists must overtake with caution due to potential oncoming traffic.

Guidance
Advisory bike lanes can be used on roadways where the following conditions exist:

- Motor vehicle traffic is <4000 vehicles per day and speeds are 25 mph or less.
- Advisory bike lane width of 5 to 7 ft.
- Minimum 2-way motor vehicle travel lane width of 13 feet.
- No centerline on roadway.

Materials and Maintenance
Paint can wear more quickly in high traffic areas or in winter climates. Bicycle lanes should be cleared of snow through routine snow removal operations.

Discussion
Most appropriate when roadways are straight with few bends, inclines or sightline obstructions. Consider the use of colored pavement within the bicycle priority area to discourage unnecessary encroachment by motorists or parked vehicles.

Additional References and Guidelines
This treatment is not currently present in any state or federal design standards though it is being implemented in the US and is common in many European countries.
Neighborhood Byways

Neighborhood byways are low-volume, low-speed streets modified to enhance bicyclist by using treatments such as signage, pavement markings, traffic calming and/or traffic reduction, and intersection modifications. These treatments allow through movements of bicyclists while discouraging similar through-trips by non-local motorized traffic.

Jurisdictions throughout the country use a wide variety of strategies to determine where specific treatments are applied. While no federal guidelines exist, several best practices have emerged for the development of neighborhood byways. At a minimum, neighborhood byways should include distinctive pavement markings and wayfinding signs. They can also use combinations of traffic calming, traffic diversion, and intersection treatments to improve the bicycling environment. The appropriate level of treatment to apply is dependent on roadway conditions, particularly motor vehicle speeds and volumes.

Traffic conditions on neighborhood byways should be monitored to provide guidance on when and where treatments should be implemented. When motor vehicle speeds and volumes or bicyclist delay exceed the preferred limits, additional treatments should be considered for the neighborhood greenway.
Neighborhood Byway

Description
Neighborhood byways are low-volume, low-speed streets modified to enhance bicyclist comfort by using treatments such as signage, pavement markings, traffic calming and/or traffic reduction, and intersection modifications. These treatments allow through movements of bicyclists while discouraging similar through-trips by non-local motorized traffic.

Guidance
- Signs and pavement markings are the minimum treatments necessary to designate a street as a neighborhood byway.
- Neighborhood byways should have a maximum posted speed of 25 mph. Use traffic calming to maintain an 85th percentile speed below 22 mph.
- Implement volume control treatments based on the context of the neighborhood byway, using engineering judgment. Target motor vehicle volumes range from 1,000 to 3,000 vehicles per day.
- Intersection crossings should be designed to enhance safety and minimize delay for bicyclists.

Discussion
Neighborhood byway retrofits to local streets are typically located on streets without existing signalized accommodation at crossings of collector and arterial roadways. Without treatments for bicyclists, these intersections can become major barriers along the neighborhood byway and compromise safety.

Traffic calming can deter motorists from driving on a street. Anticipate and monitor vehicle volumes on adjacent streets to determine whether traffic calming results in inappropriate volumes. Traffic calming can be implemented on a trial basis.

Additional References and Guidelines
BikeSafe. (No Date). Bicycle countermeasure selection system.

Materials and Maintenance
Vegetation should be regularly trimmed to maintain visibility and attractiveness.
Route Selection

Description

Neighborhood byways should be developed on streets that improve connectivity to key destinations and provide a direct route for bicyclists. Local streets with existing traffic calming, traffic diversions, or signalized crossings of major streets are good candidates, as they tend to be existing bicycle routes and have low motor vehicle speeds and volumes. Other streets where residents have expressed a desire for traffic calming are also good options.

Neighborhood byways parallel to commercial streets improve access for “interested but concerned” bicyclists and complement bike lanes on major roadways.

Guidance

- Streets are signed at 25 mph or less to improve the bicycling environment and decrease the risk and severity of crashes.
- Traffic volumes are limited to 3,000 vehicles per day (ideally less than 1,500) to minimize passing events and potential conflicts with motor vehicles.
- Use of streets that parallel major streets can discourage non-local motor vehicle traffic without significantly impacting motorists.
- Use of streets where a relatively continuous route for bicyclists exists and/or where treatments can provide wayfinding and improve crossing opportunities at offset intersections.
- Use of streets where bicyclists have right-of-way at intersections or where right-of-way is possible to assign to bicyclists.

Discussion

Neighborhood byways should form a continuous network of streets or off-street facilities that accommodate bicyclists who are less willing to ride on streets with motorized traffic. Most neighborhood byways are located on residential streets, though they can also be on commercial or industrial streets. Due to the presence of trucks and commercial vehicles, as well as the need to maintain good traffic flow and retain motor vehicle parking, neighborhood byways on commercial or industrial streets can tolerate higher automobile speeds and volumes than would be desired on neighborhood streets. Vertical traffic calming can minimize impacts to large vehicles and parking.

Additional References and Guidelines

Materials and Maintenance

Repaving, street sweeping and other maintenance should occur with higher frequency than on other local streets.
Basic Treatments

Description

Signs and pavement markings are the minimum treatments necessary to designate a street as a neighborhood greenway. Together, they visibly designate a roadway to both bicyclists and motorists. Signs, and in some cases pavement markings, provide wayfinding to help bicyclists remain on the designated route.

Guidance

Pavement Markings

Place symbols every 250-800 feet along a linear corridor, as well as after every intersection.

On narrow streets where a motor vehicle cannot pass a bicyclist within one lane of traffic, place stencils in the center of the travel lane.

See Marked Shared Roadway guidance for additional information on the use of shared lane markings.

A bicycle symbol can be placed on a standard road sign, along with distinctive coloration.

Signs

See Bikeway Signing for guidance on developing bicycle wayfinding signage. Some cities have developed unique logos or colors for wayfinding signs that help brand their neighborhood byways.

Be consistent in content, design, and intent; colors reserved by the Manual on Uniform Traffic Devices (MUTCD) for regulatory and warning road signs are not recommended.

Signs can include information about intersecting bikeways and distance/time information to key destinations.

Discussion

Wayfinding signs displaying destinations, distances, and "riding time" can dispel common misperceptions about time and distance while increasing users’ comfort and accessibility to the neighborhood greenway network. Neighborhood byways frequently include offset intersections or ‘jog’ onto another street. Signs and pavement markings can help bicyclists remain on the route. In addition, fewer businesses or services are located along local streets, and signs inform bicyclists of the direction to key destinations, including commercial districts, transit hubs, schools and universities, and other bikeways.

Additional References and Guidelines

City of Milwaukie. (2009). Milwaukie Bicycle Wayfinding Signage Plan
City of Oakland (2009). Design Guidelines for Bicycle Wayfinding Signage

Materials and Maintenance

Pavement markings should be repainted and signs replaced as needed. Wayfinding signs should be regularly updated with new major destinations and bikeways.
Vertical Traffic Calming

Description
Motor vehicle speeds affect the frequency at which automobiles pass bicyclists as well as the severity of crashes that can occur. Maintaining motor vehicle speeds closer to those of bicyclists’ greatly improves bicyclists’ comfort on a street. Slower vehicular speeds also improve motorists’ ability to see and react to bicyclists and minimize conflicts at driveways and other turning locations.

Vertical speed control measures are composed of slight rises in the pavement, on which motorists and bicyclists must reduce speed to cross.

Guidance
- Neighborhood byways should have a maximum posted speed of 25 mph. Use traffic calming to maintain an 85th percentile speed below 22 mph.
- Speed humps are raised areas usually placed in a series across both travel lanes. A 14’ long hump reduces impacts to emergency vehicles. Speed humps can be challenging for bicyclists, gaps can be provided in the center or by the curb for bicyclists and to improve drainage. Speed humps can also be offset to accommodate emergency vehicles.
- Speed lumps or cushions have gaps to accommodate the wheel tracks of emergency vehicles.
- Speed tables are longer than speed humps and flat-topped. Raised crosswalks are speed tables that are marked and signed for a pedestrian crossing.
- For all vertical traffic calming, slopes should not exceed 1:10 or be less steep than 1:25. Tapers should be no greater than 1:6 to reduce the risk of bicyclists losing their balance. The vertical lip should be no more than a 1/4” high.

Discussion
Emergency vehicle response times should be considered where vertical deflection is used. Because emergency vehicles have a wider wheel base than passenger cars, speed lumps/cushions allow them to pass unimpeded while slowing most other traffic. Alternatively, speed tables are recommended because they cannot be straddled by a truck, decreasing the risk of bottoming out. Traffic calming can also deter motorists from driving on a street. Monitor vehicle volumes on adjacent streets to determine whether traffic calming results in inappropriate volumes. Traffic calming can be implemented on a trial basis.

Additional References and Guidelines
BikeSafe. (No Date). Bicycle countermeasure selection system.

Materials and Maintenance
Traffic calming should be designed to minimize impacts to snowplows. Vegetation should be regularly trimmed to maintain visibility and attractiveness.
Horizontal Traffic Calming

Description

Horizontal traffic calming devices cause drivers to slow down by constricting the roadway space or by requiring careful maneuvering.

Such measures may reduce the design speed of a street, and can be used in conjunction with reduced speed limits to reinforce the expectation of lowered speeds.

Guidance

- Maintain a minimum clear width of 20 feet (or 28 feet with parking on both sides), with a constricted length of at least 20 feet in the direction of travel.
- Chicane are a series of raised or delineated curb extensions, edge islands, or parking bays on alternating sides of a street forming an “S”-shaped curb, which reduce vehicle speeds by requiring motorists to shift laterally through narrowed travel lanes.
- Pinchpoints are curb extensions placed on both sides of the street, narrowing the travel lane and encouraging all road users to slow down. When placed at intersections, pinchpoints are known as chokers or neckdowns. They reduce curb radii and further lower motor vehicle speeds.
- Traffic circles are raised or delineated islands placed at intersections that reduce vehicle speeds by narrowing turning radii and the travel lane. Traffic circles can also include a paved apron to accommodate the turning radii of larger vehicles like fire trucks or school buses.

Discussion

Horizontal speed control measures should not infringe on bicycle space. Where possible, provide a bicycle route outside of the element so bicyclists can avoid having to merge into traffic at a narrow pinch point. This technique can also improve drainage flow and reduce construction and maintenance costs. Traffic calming can also deter motorists from driving on a street. Monitor vehicle volumes on adjacent streets to determine whether traffic calming results in inappropriate volumes. Traffic calming can be implemented on a trial basis.

Additional References and Guidelines

- BikeSafe. (No Date). Bicycle countermeasure selection system.

Materials and Maintenance

Traffic calming should be designed to minimize impacts to snowplows. Vegetation should be regularly trimmed to maintain visibility and attractiveness.
Traffic Diversion

Description
Motor vehicle traffic volumes affect the operation of a neighborhood greenway. Higher vehicle volumes reduce bicyclists' comfort and can result in more conflicts.

Implement volume control treatments based on the context of the neighborhood greenway, using engineering judgment. Target motor vehicle volumes range from 1,000 to 3,000 vehicles per day, above which the route should be striped as a bike lane or considered a signed shared roadway.

Guidance
• Traffic diversion treatments reduce motor vehicle volumes by completely or partially restricting through traffic on a neighborhood greenway.
• Partial closures allow full bicycle passage while restricting vehicle access to one way traffic at that point.
• Diagonal diverters require all motor vehicle traffic to turn.
• Median diverters (see Major Intersection Treatments) restrict through motor vehicle movements while providing a refuge for bicyclists to cross in two stages.
• Street closures create a "T" that blocks motor vehicles from continuing on a neighborhood greenway, while bicycle travel can continue unimpeded. Full closures can accommodate emergency vehicles with the use of mountable curbs (maximum of six inches high).

Discussion
Neighborhood byways on streets with volumes higher than 3,000 vehicles per day are not recommended, although a segment of a neighborhood greenway may accommodate more traffic for a short distance if necessary to complete the corridor. Providing additional separation with a Bike Lane, Cycle Track or other treatment is recommended where traffic calming or diversion cannot reduce volumes below this threshold.

Additional References and Guidelines

Materials and Maintenance
Depending on the diverter type, these treatments can be challenging to keep clear of snow and debris. Vegetation should be regularly trimmed to maintain visibility and attractiveness.
Minor Intersection Treatments

Description
Treatments at minor roadway intersections are designed to improve the visibility of a neighborhood greenway, raise awareness of motorists on the cross-street that they are likely to encounter bicyclists, and enhance safety for all road users.

Guidance
- On the neighborhood greenway, the majority of intersections with minor roadways should stop-control cross traffic to minimize bicyclist delay. This will maximize bicycling efficiency.
- Traffic circles are a type of Horizontal Traffic Calming that can be used at minor street intersections. Traffic circles reduce conflict potential and severity while providing traffic calming to the corridor.
- If a stop sign is present on the neighborhood greenway, a second stop bar for bicyclists can be placed closer to the centerline of the cross street than the motorists’ stop bar to increase the visibility of bicyclists waiting to cross the street.
- Curb extensions can be used to move bicyclists closer to the centerline to improve visibility and encourage motorists to let them cross.

Discussion
Stop signs increase bicycling time and energy expenditure, frequently leading to non-compliance by bicyclists and motorists, and/or use of other less desirable routes. Neighborhood byways should have fewer stops or delays than other local streets. A typical bicycle trip of 30 minutes can increase to 40 minutes if there is a STOP sign at every block (Berkeley Bicycle Boulevard Design Tools and Guidelines). If several stop signs are turned along a corridor, speeds should be monitored and traffic-calming treatments used to reduce excessive vehicle speeds on the neighborhood greenway.

Additional References and Guidelines

Materials and Maintenance
Vegetation in traffic circles and curb extensions should be regularly trimmed to maintain visibility and attractiveness. Repaint bicycle stop bars as needed.
Major Intersection Treatments

Description
The quality of treatments at major street crossings can significantly affect a bicyclist’s choice to use a neighborhood greenway, as opposed to another road that provides a crossing treatment.

Guidance
- **Bike boxes** increase bicyclist visibility to motorists and reduce the danger of right “hooks” by providing a space for bicyclists to wait at signalized intersections.
- Median islands provided at uncontrolled intersections of neighborhood byways and major streets allow bicyclists to cross one direction of traffic at a time as gaps in traffic occur.
- **Hybrid Beacons, active warning beacons** and **bicycle signals** can facilitate bicyclists crossing a busy street on which cross-traffic does not stop.
- Select treatments based on engineering judgment; see National Cooperative Highway Research Program (NCHRP) Report # 562 *Improving Pedestrian Safety at Unsignalized Crossings* (2006) for guidance on appropriate use of crossing treatments. Treatments are designed to improve visibility and encourage motorists to stop for pedestrians; with engineering judgement many of the same treatments are appropriate for use along neighborhood byways.

Discussion
Neighborhood greenway retrofits to local streets are typically located on streets without existing signalized accommodation at crossings of collector and arterial roadways. Without treatments for bicyclists, these intersections can become major barriers along the neighborhood greenway and compromise safety.

Additional References and Guidelines

Materials and Maintenance
Maintain signs, markings, and other treatments and replace as needed. Monitor intersections for bicyclist delay to determine if additional treatments are warranted.
Offset Intersection Treatments

Description
Offset intersections can be challenging for bicyclists who are required to briefly travel along the busier cross street in order to continue along the neighborhood greenway.

Guidance
- Appropriate treatments depend on volume of traffic including turning volumes, traffic speeds and the type of bicyclist using the crossing.
- **Contraflow Bike Lanes** allow bicyclists to travel against the flow of traffic on a one-way street and can improve neighborhood greenway connectivity.
- Bicycle left-turn lanes can be painted where a neighborhood greenway is offset to the right on a street that has sufficient traffic gaps. Bicyclists cross one direction of traffic and wait in a protected space for a gap in the other direction. The bike turn pockets should be at least 4 feet wide, with a total of 11 feet for both turn pockets and center striping.
- Short **Bike Lanes** on the cross street assist with accessing a neighborhood greenway that jogs to the left. Crossing treatments should be provided on both sides to minimize wrong-way riding.
- A **Cycle Track** can be provided on one side of a busy street. Bicyclists enter the cycle track from the neighborhood greenway to reach the connecting segment of the neighborhood greenway. This maneuver may be signalized on one side.

Discussion
Because neighborhood byways are located on local streets, the route is often discontinuous. Wayfinding and pavement markings assist bicyclists with remaining on the route.

Additional References and Guidelines

Materials and Maintenance
Paint can wear more quickly in high traffic areas or in winter climates. Facilities should be cleared of snow through routine snow removal operations.
Retrofitting Existing Streets to add Bikeways

Most major streets are characterized by conditions (e.g., high vehicle speeds and/or volumes) for which dedicated bike lanes are the most appropriate facility to accommodate safe and comfortable riding. Although opportunities to add bike lanes through roadway widening may exist in some locations, many major streets have physical and other constraints that would require street retrofit measures within existing curb-to-curb widths. As a result, much of the guidance provided in this section focuses on effectively reallocating existing street width through striping modifications to accommodate dedicated bike lanes.

Although largely intended for major streets, these measures may be appropriate for any roadway where bike lanes would be the best accommodation for bicyclists.
Roadway Widening

Description
Bike lanes can be accommodated on streets with excess right-of-way through shoulder widening. Although roadway widening incurs higher expenses compared with re-stripping projects, bike lanes can be added to streets currently lacking curbs, gutters and sidewalks without the high costs of major infrastructure reconstruction.

Guidance
- Guidance on bicycle lanes applies to this treatment.
- 4 foot minimum width when no curb and gutter is present.
- 6 foot width preferred.

Discussion
Roadway widening is most appropriate on roads lacking curbs, gutters and sidewalks.

If it is not possible to meet minimum bicycle lane dimensions, a reduced width paved shoulder can still improve conditions for bicyclists on constrained roadways. In these situations, a minimum of 3 feet of operating space should be provided.

Additional References and Guidelines

Materials and Maintenance
The extended bicycle area should not contain any rough joints where bicyclists ride. Saw or grind a clean cut at the edge of the travel lane, or feather with a fine mix in a non-ridable area of the roadway.
Description

Lane narrowing utilizes roadway space that exceeds minimum standards to provide the needed space for bike lanes. Many roadways have existing travel lanes that are wider than those prescribed in local and national roadway design standards, or which are not marked. Most standards allow for the use of 11 foot and sometimes 10 foot wide travel lanes to create space for bike lanes.

Guidance

Vehicle lane width:
- Before: 10-15 feet
- After: 10-11 feet

Bicycle lane width:
- Guidance on Bicycle Lanes applies to this treatment.

Discussion

Special consideration should be given to the amount of heavy vehicle traffic and horizontal curvature before the decision is made to narrow travel lanes. Center turn lanes can also be narrowed in some situations to free up pavement space for bike lanes.

AASHTO supports reduced width lanes in *A Policy on Geometric Design of Highways and Streets*: “On interrupted-flow operation conditions at low speeds (45 mph or less), narrow lane widths are normally adequate and have some advantages.”

Additional References and Guidelines

Materials and Maintenance

Repair rough or uneven pavement surface. Use bicycle compatible drainage grates. Raise or lower existing grates and utility covers so they are flush with the pavement.
Lane Reconfiguration

Description
The removal of a single travel lane will generally provide sufficient space for bike lanes on both sides of a street. Streets with excess vehicle capacity provide opportunities for bike lane retrofit projects.

Guidance

Vehicle lane width:
- Width depends on project. No narrowing may be needed if a lane is removed.

Bicycle lane width:
- Guidance on Bicycle Lanes applies to this treatment.

Discussion
Depending on a street's existing configuration, traffic operations, user needs and safety concerns, various lane reduction configurations may apply. For instance, a four-lane street (with two travel lanes in each direction) could be modified to provide one travel lane in each direction, a center turn lane, and bike lanes. Prior to implementing this measure, a traffic analysis should identify potential impacts.

Additional References and Guidelines
FHWA. (2010). Evaluation of Lane Reduction "Road Diet" Measures on Crashes. Publication Number: FHWA-HRT-10-053

Materials and Maintenance
Repair rough or uneven pavement surface. Use bicycle compatible drainage grates. Raise or lower existing grates and utility covers so they are flush with the pavement.
Parking Reduction

Description
Bike lanes can replace one or more on-street parking lanes on streets where excess parking exists and/or the importance of bike lanes outweighs parking needs. For example, parking may be needed on only one side of a street. Eliminating or reducing on-street parking also improves sight distance for bicyclists in bike lanes and for motorists on approaching side streets and driveways.

Guidance
Vehicle lane width:
- Parking lane width depends on project. No travel lane narrowing may be required depending on the width of the parking lanes.

Bicycle lane width:
- Guidance on Bicycle Lanes applies to this treatment.

Discussion
Removing or reducing on-street parking to install bike lanes requires comprehensive outreach to the affected businesses and residents. Prior to reallocating on-street parking for other uses, a parking study should be performed to gauge demand and to evaluate impacts to people with disabilities.

Additional References and Guidelines

Materials and Maintenance
Repair rough or uneven pavement surface. Use bicycle compatible drainage grates. Raise or lower existing grates and utility covers so they are flush with the pavement.
Separated Bikeways

Designated exclusively for bicycle travel, separated bikeways are segregated from vehicle travel lanes by striping, and can include pavement stencils and other treatments. Separated bikeways are most appropriate on arterial and collector streets where higher traffic volumes and speeds warrant greater separation.

Separated bikeways can increase safety and promote proper riding by:

- Defining road space for bicyclists and motorists, reducing the possibility that motorists will stray into the bicyclists’ path.
- Discouraging bicyclists from riding on the sidewalk.
- Reducing the incidence of wrong way riding.
- Reminding motorists that bicyclists have a right to the road.
Shoulder Bikeways

Description
Typically found in less-dense areas, shoulder bikeways are paved roadways with striped shoulders (4’+) wide enough for bicycle travel. Shoulder bikeways often, but not always, include signage alerting motorists to expect bicycle travel along the roadway. Shoulder bikeways should be considered a temporary treatment, with full bike lanes planned for construction when the roadway is widened.

Guidance
- If 4 feet or more is available for bicycle travel, the full bike lane treatment of signs, legends, and a 6”-8” bike lane line would be provided.
- If it is not possible to meet minimum bicycle lane dimensions, a reduced width paved shoulder can still improve conditions for bicyclists on constrained roadways. In these situations, a minimum of 3 feet of operating space should be provided.
- Reduce travel lanes to 11’, or even 10.5’ if necessary, to provide a minimum 3’ shoulder.

Discussion
A wide outside lane may be sufficient accommodation for bicyclists on streets with insufficient width for bike lanes. While a wide outside lane with shared lane markings is sufficient accommodation for bicyclists on streets with insufficient width for bike lanes, a shoulder bikeway should be considered an option.

Where feasible, roadway widening should be performed with pavement resurfacing jobs, but not exceeding desirable bike lane widths.

Additional References and Guidelines

Materials and Maintenance
Paint can wear more quickly in high traffic areas or in winter climates. Shoulder bikeways should be cleared of snow through routine snow removal operations.
Bike Lane without On-Street Parking

Description
Bike lanes designate an exclusive space for bicyclists through the use of pavement markings and signage. The bike lane is typically located on the right side of the street, between the adjacent travel lane and curb, and is used in the same direction as motor vehicle traffic.

Guidance
- 4 foot minimum when no curb and gutter is present.
- 5 foot minimum when adjacent to curb and gutter or 3 feet more than the gutter pan width if the gutter pan is wider than 2 feet.
- 7 foot maximum width for use adjacent to arterials with high travel speeds. Greater widths may encourage motor vehicle use of bike lane. See buffered bicycle lanes when a wider facility is desired.
- The bike lane should be dashed for the last 50’ on the approach to an intersection to visually warn bicyclists that motorists may cross into the bike lane to make a right turn.

Discussion
Wider bicycle lanes are desirable in certain situations such as on higher speed arterials (45 mph+) where use of a wider bicycle lane would increase separation between passing vehicles and bicyclists. Appropriate signing and stenciling is important with wide bicycle lanes to ensure motorists do not mistake the lane for a vehicle lane or parking lane. Consider Buffered Bicycle Lanes when further separation is desired.

Additional References and Guidelines

Materials and Maintenance
Paint can wear more quickly in high traffic areas or in winter climates. Bicycle lanes should be cleared of snow through routine snow removal operations.
Bike Lane Adjacent to On-Street Parallel Parking

Description

Bike lanes designate an exclusive space for bicyclists through the use of pavement markings and signage. The bike lane is located adjacent to motor vehicle travel lanes and is used in the same direction as motor vehicle traffic. Bike lanes are typically on the right side of the street, between the adjacent travel lane and curb, road edge or parking lane.

Many bicyclists, particularly less experienced riders, are more comfortable riding on a busy street if it has a striped and signed bikeway than if they are expected to share a lane with vehicles.

Guidance

- 12' minimum from curb face to edge of bike lane.
- 13’-14’ preferred from curb face to edge of bike lane.
- 7' maximum for marked width of bike lane. Greater widths may encourage vehicle loading in bike lane. To provide buffer zone adjacent to the “door zone”, diagonal hatch markings may be added in the bike lane.
- Where 13’ is available between curb and travel lane, preference is for a 6’ bike lane adjacent to 7’ parking unless a loading zone requires the need for 8’-wide parking lane.
- Where 14’ is available, preference is for 6’ bike lane adjacent to 8’ parking.

Discussion

Bike lanes adjacent to on-street parallel parking require special treatment in order to avoid crashes caused by an open vehicle door. The bike lane should have sufficient width to allow bicyclists to stay out of the door zone while not encroaching into the adjacent vehicular lane. White hatch lines occupying the right half of the lane create a parking side buffer that encourages bicyclists to ride farther away from the door zone.

Additional References and Guidelines

Materials and Maintenance

Paint can wear more quickly in high traffic areas or in winter climates. Bicycle lanes should be cleared of snow through routine snow removal operations.
Contra-flow Bike Lane on One-way Street

Description
Contra-flow bike lanes provide bidirectional bicycle access on a roadway that is one-way for motor vehicle traffic. This treatment can provide direct access and connectivity for bicyclists and reducing travel distances. Contra-flow bike lanes can also be used to convert two-way motor vehicle traffic to one-way to reduce traffic volumes where desired.

Guidance
- The contra-flow bike lane should be 5-7 feet wide and marked with a solid double yellow line and appropriate signage. Bike lane markings should be clearly visible to ensure that the contra-flow lane is exclusively for bicycles. Coloration should be considered in the bike lane.
- Signage specifically allowing bicycles at the entrance of the contra flow lane is recommended.

Discussion
Because of the opposing direction of travel, contra-flow bike lanes increase the speed differential between bicyclists and motor vehicles in the adjacent travel lane. If space permits consider a **buffered bike lane** or **cycle track** configuration to provide additional separation.

Additional References and Guidelines

Materials and Maintenance
Paint can wear more quickly in high traffic areas or in winter climates. Bicycle lanes should be cleared of snow through routine snow removal operations.
Buffered Bike Lane

Description
Buffered bike lanes are conventional bicycle lanes paired with a designated buffer space, separating the bicycle lane from the adjacent motor vehicle travel lane and/or parking lane. Buffered bike lanes are allowed as per MUTCD guidelines for buffered preferential lanes (section 3D-01).

Buffered bike lanes are designed to increase the space between the bike lane and the travel lane or parked cars. This treatment is appropriate for bike lanes on roadways with high motor vehicle traffic volumes and speed, adjacent to parking lanes, or a high volume of truck or oversized vehicle traffic.

Guidance
- Where bicyclist volumes are high or where bicyclist speed differentials are significant, the desired bicycle travel area width is 7 feet.
- Buffers should be at least 2 feet wide. If 3 feet or wider, mark with diagonal or chevron hatching. For clarity at driveways or minor street crossings, consider a dotted line for the inside buffer boundary where cars are expected to cross.

Discussion
Frequency of right turns by motor vehicles at major intersections should determine whether continuous or truncated buffer striping should be used approaching the intersection. Commonly configured as a buffer between the bicycle lane and motor vehicle travel lane, a parking side buffer may also be provided to help bicyclists avoid the ‘door zone’ of parked cars.

Additional References and Guidelines

Materials and Maintenance
Paint can wear more quickly in high traffic areas or in winter climates. Bicycle lanes should be cleared of snow through routine snow removal operations.
Uphill Bicycle Climbing Lane

Description
Uphill bike lanes (also known as “climbing lanes”) enable motorists to safely pass slower-speed bicyclists, thereby improving conditions for both travel modes.

Guidance
- Uphill bike lanes should be 6-7 feet wide (wider lanes are preferred because extra maneuvering room on steep grades can benefit bicyclists).
- Can be combined with Shared Lane Markings for downhill bicyclists who can more closely match prevailing traffic speeds.

Discussion
This treatment is typically found on retrofit projects as newly constructed roads should provide adequate space for bicycle lanes in both directions of travel. Accommodating an uphill bicycle lane often includes delineating on-street parking (if provided), narrowing travel lanes and/or shifting the centerline if necessary.

Additional References and Guidelines

Materials and Maintenance
Paint can wear more quickly in high traffic areas or in winter climates. Bicycle lanes should be cleared of snow through routine snow removal operations.
Colored Bike Lanes

Description
Colored pavement within a bicycle lane increases the visibility of the bicycle facility. Use of color is appropriate for use in areas with pressure for illegal parking, frequent encroachment of motor vehicles, clarify conflict areas, and along enhanced facilities such as contra-flow bicycle lanes and cycle tracks.

Color has also been used in conjunction with shared lane markings to create a "lane within a lane" to further clarify proper bicyclist positioning on shared roadway streets.

When applied along full corridors, driveway and intersection areas should be identified though the absence of color, or the use of an alternate marking pattern to identify potential conflict areas.

Guidance
The color green has been given interim approval by the Federal Highways Administration in March of 2011. See interim approval IA-14 for specific color standards.

The colored surface should be skid resistant and retro-reflective.

Discussion
Colored pavement is also used to identify potential areas of conflict, and reinforces priority to bicyclists in these conflict areas. See Colored Bike Lanes in Conflict Areas for more guidance.

Additional References and Guidelines
FHWA. (2011). Interim Approval (IA-14) has been granted. Requests to use green colored pavement need to comply with the provisions of Paragraphs 14 through 22 of Section 1A.10

Materials and Maintenance
Paint can wear more quickly in high traffic areas or in winter climates. Bicycle lanes should be cleared of snow through routine snow removal operations.

Cycle Tracks

A cycle track is an exclusive bike facility that combines the user experience of a separated path with the on-street infrastructure of a conventional bike lane. A cycle track is physically separated from motor traffic and distinct from the sidewalk. Cycle tracks have different forms but all share common elements—they provide space that is intended to be exclusively or primarily used by bicycles, and are separated from motor vehicle travel lanes, parking lanes, and sidewalks. In situations where on-street parking is allowed, cycle tracks are located to the curb-side of the parking (in contrast to bike lanes).

Cycle tracks may be one-way or two-way, and may be at street level, sidewalk level or at an intermediate level. If at sidewalk level, a curb or median separates them from motor traffic, while different pavement color/texture separates the cycle track from the sidewalk. If at street level, they can be separated from motor traffic by raised medians, on-street parking or bollards.

A two-way cycle track is desirable when more destinations are on one side of a street (therefore preventing additional crossings), if the facility connects to a path or other bicycle facility on one side of the street, or if there is not enough room for a cycle track on both sides of the road.

By separating bicyclists from motor traffic, cycle tracks can offer a higher level of comfort than bike lanes and are attractive to a wider spectrum of the public.

Intersections and approaches must be carefully designed to promote safety and facilitate left-turns from the right side of the street. See separated bikeways at intersections for more information.
Cycle Track Separation and Placement

Description
Protection is provided through physical barriers and can include bollards, parking, a planter strip, an extruded curb, or on-street parking. Cycle tracks using these protection elements typically share the same elevation as adjacent travel lanes.

Raised cycle tracks may be at the level of the adjacent sidewalk or set at an intermediate level between the roadway and sidewalk to separate the cycle track from the pedestrian area.

Guidance
- Cycle tracks should ideally be placed along streets with long blocks and few driveways or mid-block access points for motor vehicles. Cycle tracks located on one-way streets have fewer potential conflict areas than those on two-way streets.
- In situations where on-street parking is allowed, cycle tracks shall be located between the parking lane and the sidewalk (in contrast to bike lanes).

Discussion
Sidewalks or other pedestrian facilities should not be narrowed to accommodate the cycle track as pedestrians will likely walk on the cycle track if sidewalk capacity is reduced. Visual and physical cues (e.g., pavement markings & signage) should be used to make it clear where bicyclists and pedestrians should be travelling. If possible, separate the cycle track and pedestrian zone with a furnishing zone.

Additional References and Guidelines

Materials and Maintenance
In cities with winter climates, barrier separated and raised cycle tracks may require special equipment for snow removal.
Driveways and Minor Street Crossings

Description
The added separation provided by cycle tracks creates additional considerations at intersections that should be addressed.

At driveways and crossings of minor streets a smaller fraction of automobiles will cross the cycle track. Bicyclists should not be expected to stop at these minor intersections if the major street does not stop.

Guidance
- If raised, maintain the height of the cycle track through the crossing, requiring automobiles to cross over.
- Remove parking 30 feet prior the intersection.
- Use colored pavement markings and/or shared lane markings through the conflict area.
- Place warning signage to identify the crossing.

Discussion
At these locations, bicyclist visibility is important, as a buffer of parked cars or vegetation can reduce the visibility of a bicyclist traveling in the cycle track. Markings and signage should be present that make it easy to understand where bicyclists and pedestrians should be travelling. Access management should be used to reduce the number of crossings of driveways on a cycle track. Driveway consolidations and restrictions on motorized traffic movements reduce the potential for conflict.

Additional References and Guidelines

Materials and Maintenance
In cities with winter climates, barrier separated and raised cycle tracks may require special equipment for snow removal.
Major Street Crossings

Description
Cycle tracks approaching major intersections must minimize and mitigate potential conflicts and provide connections to intersecting facility types.

Cycle track crossings of signalized intersections can also be accomplished through the use of a bicycle signal phase which reduces conflicts with motor vehicles by separating bicycle movements from any conflicting motor vehicle movements.

Guidance
• Drop cycle track buffer and transition to bike lane 16’ in advance of the intersection.
• Remove parking 16’ -50’ in advance of the buffer termination.
• Use a bike box or advanced stop line treatment to place bicyclists in front of traffic.
• Use colored pavement markings through the conflict area.
• Provide for left-turning movements with two-stage turn boxes.
• Consider using a protected phase bicycle signal to isolate conflicts between bicyclists and motor vehicle traffic.
• In constrained conditions with right turn only lanes, consider transitioning to a shared bike lane/turn lane.

Discussion
Signalization utilizing a bicycle signal head can also be set to provide cycle track users a green phase in advance of vehicle phases. The length of the signal phase will depend on the width of the intersection.

The same conflicts exist at non-signalized intersections. Warning signs, special markings and the removal of on-street parking in advance of the intersection can raise visibility and awareness of bicyclists.

Additional References and Guidelines

Materials and Maintenance
In cities with winter climates, barrier separated and raised cycle tracks may require special equipment for snow removal.
Shared Use Paths Along Roadways

Description

Similar to a two-way cycle track, a shared used path adjacent to a roadway provides for two way travel separated from motor vehicle traffic.

A shared use path allows for two-way, off-street bicycle use and also may be used by pedestrians, skaters, wheelchair users, runners and other non-motorized users. These facilities are frequently found in parks, along rivers, beaches, and in greenbelts or utility corridors where there are few conflicts with motorized vehicles.

Along roadways, these facilities create a situation where a portion of the bicycle traffic rides against the normal flow of motor vehicle traffic and can result in wrong-way riding where bicyclists enter or leave the path.

The AASHTO Guide for the Development of Bicycle Facilities generally recommends against the development of shared-use paths directly adjacent to roadways.

Guidance

- 8 feet is the minimum allowed for a two-way bicycle path and is only recommended in low traffic situations.
- 10 feet is recommended in most situations and is adequate for moderate to heavy use.
- 12 feet is recommended for heavy use situations with high concentrations of multiple users such as runners, bicyclists, rollerbladers and pedestrians. A separate track (5’ minimum) can be provided for pedestrian use.

Bicycle lanes should be provided as an alternate facility whenever possible.

Discussion

When designing a bikeway network, the presence of a nearby or parallel path should not be used as a reason to not provide adequate shoulder or bicycle lane width on the roadway, as the on-street bicycle facility is preferred over the “sidepath” by experienced bicyclists and those who are cycling for transportation purposes.

Additional References and Guidelines

Materials and Maintenance

Asphalt is the most common surface for bicycle paths. The use of concrete for paths has proven to be more durable over the long term. Saw-cut concrete joints (rather than troweled) improve the experience of path users.
Intersections are junctions at which different modes of transportation meet and facilities overlap. An intersection facilitates the interchange between bicyclists, motorists, pedestrians and other modes in order to advance traffic flow in a safe and efficient manner. Designs for intersections with bicycle facilities should reduce conflict between bicyclists (and other vulnerable road users) and vehicles by heightening the level of visibility, denoting clear right-of-way and facilitating eye contact and awareness with other modes. Intersection treatments can improve both queuing and merging maneuvers for bicyclists, and are often coordinated with timed or specialized signals.

The configuration of a safe intersection for bicyclists may include elements such as color, signage, medians, signal detection and pavement markings. Intersection design should take into consideration existing and anticipated bicyclist, pedestrian and motorist movements. In all cases, the degree of mixing or separation between bicyclists and other modes is intended to reduce the risk of crashes and increase bicyclist comfort. The level of treatment required for bicyclists at an intersection will depend on the bicycle facility type used, whether bicycle facilities are intersecting, and the adjacent street function and land use.
Bike Box

Description
A bike box is a designated area located at the head of a traffic lane at a signalized intersection that provides bicyclists with a safe and visible space to get in front of queuing motorized traffic during the red signal phase. Motor vehicles must queue behind the white stop line at the rear of the bike box.

Guidance
- 14' minimum depth
- A “No Turn on Red” (MUTCD R10-11) sign shall be installed overhead to prevent vehicles from entering the Bike Box.
- A “Stop Here on Red” sign should be post-mounted at the stop line to reinforce observance of the stop line.
- A “Yield to Bikes” sign should be post-mounted in advance of and in conjunction with an egress lane to reinforce that bicyclists have the right-of-way going through the intersection.
- An ingress lane should be used to provide access to the box.
- A supplemental “Wait Here” legend can be provided in advance of the stop bar to increase clarity to motorists.

Discussion
Bike boxes should be placed only at signalized intersections, and right turns on red shall be prohibited for motor vehicles. Bike boxes should be used in locations that have a large volume of bicyclists and are best utilized in central areas where traffic is usually moving more slowly. Prohibiting right turns on red improves safety for bicyclists yet does not significantly impede motor vehicle travel.

Additional References and Guidelines
FHWA. (2011). Interim Approval (IA-14) has been granted. Requests to use green colored pavement need to comply with the provisions of Paragraphs 14 through 22 of Section 1A.10

Materials and Maintenance
Because the effectiveness of markings depends entirely on their visibility, maintaining markings should be a high priority.
Bike Lanes at Right Turn Only Lanes

Description
The appropriate treatment at right-turn lanes is to place the bike lane between the right-turn lane and the right-most through lane or, where right-of-way is insufficient, to use a shared bike lane/turn lane.

The design (right) illustrates a bike lane pocket, with signage indicating that motorists should yield to bicyclists through the conflict area.

Guidance
At auxiliary right turn only lanes (add lane):

- Continue existing bike lane width; standard width of 5 to 6 feet or 4 feet in constrained locations.
- Use signage to indicate that motorists should yield to bicyclists through the conflict area.
- Consider using colored conflict areas to promote visibility of the mixing zone.

Where a through lane becomes a right turn only lane:

- Do not define a dotted line merging path for bicyclists.
- Drop the bicycle lane in advance of the merge area.
- Use shared lane markings to indicate shared use of the lane in the merging zone.

Discussion
For other potential approaches to providing accommodations for bicyclists at intersections with turn lanes, please see shared bike lane/turn lane, bicycle signals, and colored bike facilities.

Additional References and Guidelines

Materials and Maintenance
Because the effectiveness of markings depends entirely on their visibility, maintaining markings should be a high priority.
Colored Bike Lanes in Conflict Areas

Description
Colored pavement within a bicycle lane increases the visibility of the facility and reinforces priority of bicyclists in conflict areas.

Guidance
- Green colored pavement was given interim approval by the Federal Highways Administration in March 2011. See interim approval for specific color standards.
- The colored surface should be skid resistant and retro-reflective.
- A “Yield to Bikes” sign should be used at intersections or driveway crossings to reinforce that bicyclists have the right-of-way in colored bike lane areas.

Discussion
Evaluations performed in Portland, OR, St. Petersburg, FL and Austin, TX found that significantly more motorists yielded to bicyclists and slowed or stopped before entering the conflict area after the application of the colored pavement when compared with an uncolored treatment.

Additional References and Guidelines
FHWA. (2011). Interim Approval (IA-14) has been granted. Requests to use green colored pavement need to comply with the provisions of Paragraphs 14 through 22 of Section 1A.10
Combined Bike Lane / Turn Lane

Description
The combined bicycle/right turn lane places a standard-width bike lane on the left side of a dedicated right turn lane. A dotted line delineates the space for bicyclists and motorists within the shared lane. This treatment includes signage advising motorists and bicyclists of proper positioning within the lane.

This treatment is recommended at intersections lacking sufficient space to accommodate both a standard through bike lane and right turn lane.

Guidance
- Maximum shared turn lane width is 13 feet; narrower is preferable.
- Bike Lane pocket should have a minimum width of 4 feet with 5 feet preferred.
- A dotted 4 inch line and bicycle lane marking should be used to clarify bicyclist positioning within the combined lane, without excluding cars from the suggested bicycle area.
- A “Right Turn Only” sign with an “Except Bicycles” plaque may be needed to make it legal for through bicyclists to use a right turn lane.

Discussion
Case studies cited by the Pedestrian and Bicycle Information Center indicate that this treatment works best on streets with lower posted speeds (30 MPH or less) and with lower traffic volumes (10,000 ADT or less). May not be appropriate for high-speed arterials or intersections with long right turn lanes. May not be appropriate for intersections with large percentages of right-turning heavy vehicles.

Additional References and Guidelines
This treatment is currently slated for inclusion in the next edition of the AASHTO Guide for the Development of Bicycle Facilities

Materials and Maintenance
Locate markings out of tire tread to minimize wear. Because the effectiveness of markings depends on their visibility, maintaining markings should be a high priority.
Intersection Crossing Markings

Description
Bicycle pavement markings through intersections indicate the intended path of bicyclists through an intersection or across a driveway or ramp. They guide bicyclists on a safe and direct path through the intersection and provide a clear boundary between the paths of through bicyclists and either through or crossing motor vehicles in the adjacent lane.

Guidance
• See MUTCD Section 3B.08: “dotted line extensions”
• Crossing striping shall be at least six inches wide when adjacent to motor vehicle travel lanes. Dotted lines should be two-foot lines spaced two to six feet apart.
• Chevrons, shared lane markings, or colored bike lanes in conflict areas may be used to increase visibility within conflict areas or across entire intersections. Elephant’s Feet markings are common in Europe and Canada.

Discussion
Additional markings such as chevrons, shared lane markings, or colored bike lanes in conflict areas are strategies currently in use in the United States and Canada. Cities considering the implementation of markings through intersections should standardize future designs to avoid confusion.

Additional References and Guidelines

Materials and Maintenance
Because the effectiveness of marked crossings depends entirely on their visibility, maintaining marked crossings should be a high priority.
Two-Stage Turn Boxes

Description

Two-stage turn queue boxes offer bicyclists a safe way to make left turns at multi-lane signalized intersections from a right side cycle track or bike lane.

On right side cycle tracks, bicyclists are often unable to merge into traffic to turn left due to physical separation, making the provision of two-stage left turn boxes critical. Design guidance for two-stage turns apply to both bike lanes and cycle tracks.

Guidance

- The queue box shall be placed in a protected area. Typically this is within an on-street parking lane or cycle track buffer area.
- 6’ minimum depth of bicycle storage area
- Bicycle stencil and turn arrow pavement markings shall be used to indicate proper bicycle direction and positioning.
- A “No Turn on Red” (MUTCD R10-11) sign shall be installed on the cross street to prevent vehicles from entering the turn box.

Discussion

While two stage turns may increase bicyclist comfort in many locations, this configuration will typically result in higher average signal delay for bicyclists due to the need to receive two separate green signal indications (one for the through street, followed by one for the cross street) before proceeding.

Additional References and Guidelines

Materials and Maintenance

Paint can wear more quickly in high traffic areas or in winter climates.
Signalization

Bicycle signals and beacons facilitate bicyclist crossings of roadways. Bicycle signals make crossing intersections safer for bicyclists by clarifying when to enter an intersection and by restricting conflicting vehicle movements. Bicycle signals are traditional three lens signal heads with green, yellow and red bicycle stenciled lenses that can be employed at standard signalized intersections and hybrid beacon crossings. Flashing amber warning beacons can be utilized at unsignalized intersection crossings. Push buttons, signage, and pavement markings may be used to supplement these facilities for both bicyclists and motorists.

Determining which type of signal or beacon to use for a particular intersection depends on a variety of factors. These include speed limits, Average Daily Traffic (ADT), anticipated bicycle crossing traffic, and the configuration of planned or existing bicycle facilities. Signals may be necessary as part of the construction of a protected bicycle facility such as a cycle track with potential turning conflicts, or to decrease vehicle or pedestrian conflicts at major crossings. An intersection with bicycle signals may reduce stress and delays for a crossing bicyclist, and discourage illegal and unsafe crossing maneuvers.
Bicycle Detection and Actuation

Description

Push Button Actuation

User-activated button mounted on a pole facing the street.

Loop Detectors

Bicycle-activated loop detectors are installed within the roadway to allow the presence of a bicycle to trigger a change in the traffic signal. This allows the bicyclist to stay within the lane of travel without having to maneuver to the side of the road to trigger a push button.

Loops that are sensitive enough to detect bicycles should be supplemented with pavement markings to instruct bicyclists how to trip them.

Video Detection Cameras

Video detection systems use digital image processing to detect a change in the image at a location. These systems can be calibrated to detect bicycles. Video camera system costs range from $20,000 to $25,000 per intersection.

Remote Traffic Microwave Sensor Detection (RTMS)

RTMS is a system which uses frequency modulated continuous wave radio signals to detect objects in the roadway. This method marks the detected object with a time code to determine its distance from the sensor. The RTMS system is unaffected by temperature and lighting, which can affect standard video detection.

Discussion

Proper bicycle detection should meet two primary criteria: 1) accurately detects bicyclists and 2) provides clear guidance to bicyclists on how to actuate detection (e.g., what button to push, where to stand).

Bicycle loops and other detection mechanisms can also provide bicyclists with an extended green time before the light turns yellow so that bicyclists of all abilities can reach the far side of the intersection.

Additional References and Guidelines

Materials and Maintenance

Signal detection and actuation for bicyclists should be maintained with other traffic signal detection and roadway pavement markings.
Active Warning Beacons

Description
Active warning beacons are user actuated illuminated devices designed to increase motor vehicle yielding compliance at crossings of multi lane or high volume roadways.

Types of active warning beacons include conventional circular yellow flashing beacons, in-roadway warning lights, or Rectangular Rapid Flash Beacons (RRFB).

Guidance
- Warning beacons shall not be used at crosswalks controlled by YIELD signs, STOP signs or traffic signals.
- Warning beacons shall initiate operation based on pedestrian or bicyclist actuation and shall cease operation at a predetermined time after actuation or, with passive detection, after the pedestrian or bicyclist clears the crosswalk.
- If roadway constraints preclude a median refuge island, a Hybrid Beacon (“HAWK”) signal should be considered after careful coordination with Maine DOT. A HAWK signal could be incorporated at either mid-block or shared-use path crossings.

Discussion
Rectangular Rapid Flash Beacons have the highest compliance of all the warning beacon enhancement options.

A study of the effectiveness of going from a no-beacon arrangement to a two-beacon RRFB installation increased yielding from 18 percent to 81 percent. A four-beacon arrangement raised compliance to 88 percent. Additional studies over long term installations show little to no decrease in yielding behavior over time.

A HAWK signal could be incorporated at either mid-block or shared-use path crossings.

Additional References and Guidelines

Materials and Maintenance
Depending on power supply, maintenance can be minimal. If solar power is used, RRFBs can run for years without issue.
Bicycle Signal Heads

Description
A bicycle signal is an electrically powered traffic control device that should only be used in combination with an existing conventional or hybrid signal. Bicycle signals are typically used to improve identified safety or operational problems involving bicycle facilities. Bicycle signal heads may be installed at signalized intersections to indicate bicycle signal phases and other bicycle-specific timing strategies. Bicycle signals can be actuated with bicycle sensitive loop detectors, video detection, or push buttons.

In the United States, bicycle signal heads typically use standard three-lens signal heads in green, yellow, and red. Bicycle signals are typically used to provide guidance for bicyclists at intersections where they may have different needs from other road users (e.g., bicycle-only movements, or leading bicycle intervals).

Guidance
Specific locations where bicycle signals have had a demonstrated positive effect include:

- Those with high volume of bicyclists at peak hours
- Those with high numbers of bicycle/motor vehicle crashes, especially those caused by turning vehicle movements
- At T-intersections with major bicycle movement along the top of the “T.”
- At the confluence of an off-street bike path and a roadway intersection
- Where separated bike paths run parallel to arterial streets

Discussion
Local municipal code should be checked or modified to clarify that at intersections with bicycle signals, bicyclists should only obey the bicycle signal heads. For improved visibility, smaller (4 inch lens) near-sided bicycle signals should be considered to supplement far-side signals.

Additional References and Guidelines
The National Committee on Uniform Traffic Control Devices has formed a Task Force that is considering adding guidance to the MUTCD on the use of bicycle signals.

Materials and Maintenance
Bicycle signal heads require the same maintenance as standard traffic signal heads, such as replacing bulbs and responding to power outages.
Greenways and Off-Street Facilities

A greenway (also known as a shared-use path) allows for two-way, off-street bicycle use and also may be used by pedestrians, skaters, wheelchair users, joggers and other non-motorized users. These facilities are frequently found in parks, along rivers, beaches, and in greenbelts or utility corridors where there are few conflicts with motorized vehicles. Path facilities can also include amenities such as lighting, signage, and fencing (where appropriate).

Key features of greenways include:

• Frequent access points from the local road network.
• Directional signs to direct users to and from the path.
• A limited number of at-grade crossings with streets or driveways.
• Terminating the path where it is easily accessible to and from the street system.
• Separate treads for pedestrians and bicyclists when heavy use is expected.
General Design Practices

Description
Shared use paths can provide a desirable facility, particularly for recreation, and users of all skill levels preferring separation from traffic. Bicycle paths should generally provide directional travel opportunities not provided by existing roadways.

Guidance

Width
- 8 feet is the minimum allowed for a two-way bicycle path and is only recommended for low traffic situations.
- 10 feet is recommended in most situations and will be adequate for moderate to heavy use.
- 12 feet is recommended for heavy use situations with high concentrations of multiple users. A separate track (5’ minimum) can be provided for pedestrian use.

Lateral Clearance
- A 2 foot or greater shoulder on both sides of the path should be provided. An additional foot of lateral clearance (total of 3’) is required by the MUTCD for the installation of signage or other furnishings.

Overhead Clearance
- Clearance to overhead obstructions should be 8 feet minimum, with 10 feet recommended.

Striping
- When striping is required, use a 4 inch dashed yellow centerline stripe with 4 inch solid white edge lines.
- Solid centerlines can be provided on tight or blind corners, and on the approaches to roadway crossings.

Discussion
The AASHTO Guide for the Development of Bicycle Facilities generally recommends against the development of shared use paths along roadways. Also known as “sidepaths”, these facilities create a situation where a portion of the bicycle traffic rides against the normal flow of motor vehicle traffic and can result in wrong-way riding when either entering or exiting the path.

Additional References and Guidelines

Materials and Maintenance
Asphalt is the most common surface for bicycle paths. The use of concrete for paths has proven to be more durable over the long term. Saw cut concrete joints rather than troweled improve the experience of path users.
Greenways in Abandoned Rail Corridors

Description
Commonly referred to as Rails-to-Trails or Rail-Trails, these projects convert vacated rail corridors into off-street paths. Rail corridors offer several advantages, including relatively direct routes between major destinations and generally flat terrain.

In some cases, rail owners may rail-bank their corridors as an alternative to a complete abandonment of the line, thus preserving the rail corridor for possible future use.

The railroad may form an agreement with any person, public or private, who would like to use the banked rail line as a trail or linear park until it is again needed for rail use. Municipalities should acquire abandoned rail rights-of-way whenever possible to preserve the opportunity for trail development.

Guidance
Greenways in abandoned rail corridors should meet or exceed general design practices. If additional width allows, wider paths, and landscaping are desirable.

In full conversions of abandoned rail corridors, the subbase, superstructure, drainage, bridges, and crossings are already established. Design becomes a matter of working with the existing infrastructure to meet the needs of a rail-trail.

If converting a rail bed adjacent to an active rail line, see Greenways in Existing Active Rail Corridors.

Discussion
It is often impractical and costly to add material to existing railroad bed fill slopes. This results in trails that meet minimum path widths, but often lack preferred shoulder and lateral clearance widths.

Rail-to-trails can involve many challenges including the acquisition of the right of way, cleanup and removal of toxic substances, and rehabilitation of tunnels, trestles and culverts. A structural engineer should evaluate existing railroad bridges for structural integrity to ensure they are capable of carrying the appropriate design loads.

Additional References and Guidelines

Materials and Maintenance
Asphalt is the most common surface for bicycle paths. The use of concrete for paths has proven to be more durable over the long term. Saw cut concrete joints rather than troweled improve the experience of path users.
Greenways in Existing Active Rail Corridors

Description
Rails-with-Tracks projects typically consist of paths adjacent to active railroads. It should be noted that some constraints could impact the feasibility of rail-with-trail projects. In some cases, space needs to be preserved for future planned freight, transit or commuter rail service. In other cases, limited right-of-way width, inadequate setbacks, concerns about safety/trespassing, and numerous mid-block crossings may affect a project’s feasibility.

Guidance
Greenways in utility corridors should meet or exceed general design standards. If additional width allows, wider paths, and landscaping are desirable.

If required, fencing should be a minimum of 5 feet in height with higher fencing usual next to sensitive areas such as switching yards. Setbacks from the active rail line will vary depending on the speed and frequency of trains, and available right-of-way.

Discussion
Railroads typically require fencing with all rail-with-trail projects. Concerns with trespassing and security can vary with the amount of train traffic on the adjacent rail line and the setting of the bicycle path, i.e. whether the section of track is in an urban or rural setting.

Additional References and Guidelines

Materials and Maintenance
Asphalt is the most common surface for bicycle paths. The use of concrete for paths has proven to be more durable over the long term. Saw cut concrete joints rather than troweled improve the experience of path users.
Local Neighborhood Accessways

Description

Neighborhood accessways provide residential areas with direct bicycle and pedestrian access to parks, trails, greenspaces, and other recreational areas. They most often serve as small trail connections to and from the larger trail network, typically having their own rights-of-way and easements.

Additionally, these smaller trails can be used to provide bicycle and pedestrian connections between dead-end streets, cul-de-sacs, and access to nearby destinations not provided by the street network.

Guidance

- Neighborhood accessways should remain open to the public.
- Trail pavement shall be at least 8’ wide to accommodate emergency and maintenance vehicles, meet ADA requirements and be considered suitable for multi-use.
- Trail widths should be designed to be less than 8’ wide only when necessary to protect large mature native trees over 18” in caliper, wetlands or other ecologically sensitive areas.
- Access trails should slightly meander whenever possible.

Discussion

Neighborhood accessways should be designed into new subdivisions at every opportunity and should be required by City/County subdivision regulations.

For existing subdivisions, Neighborhood and homeowner association groups are encouraged to identify locations where such connects would be desirable. Nearby residents and adjacent property owners should be invited to provide landscape design input.

Additional References and Guidelines

Materials and Maintenance

Asphalt is the most common surface for bicycle paths. The use of concrete for paths has proven to be more durable over the long term. Saw cut concrete joints rather than troweled improve the experience of path users.
Path/Roadway Crossings

At-grade roadway crossings can create potential conflicts between path users and motorists, however, well-designed crossings can mitigate many operational issues and provide a higher degree of safety and comfort for path users. This is evidenced by the thousands of successful facilities around the United States with at-grade crossings. In most cases, at-grade path crossings can be properly designed to provide a reasonable degree of safety and can meet existing traffic and safety standards. Path facilities that cater to bicyclists can require additional considerations due to the higher travel speed of bicyclists versus pedestrians.

Consideration must be given to adequate warning distance based on vehicle speeds and line of sight, with the visibility of any signs absolutely critical. Directing the active attention of motorists to roadway signs may require additional alerting devices such as a flashing beacon, roadway striping or changes in pavement texture. Signing for path users may include a standard “STOP” or “YIELD” sign and pavement markings, possibly combined with other features such as bollards or a bend in the pathway to slow bicyclists. Care must be taken not to place too many signs at crossings lest they begin to lose their visual impact.

A number of striping patterns have emerged over the years to delineate path crossings. A median stripe on the path approach will help to organize and warn path users. Crosswalk striping is typically a matter of local and State preference, and may be accompanied by pavement treatments to help warn and slow motorists. In areas where motorists do not typically yield to crosswalk users, additional measures may be required to increase compliance.
Marked/Unsignalized Crossings

Description
A marked/unsignalized crossing typically consists of a marked crossing area, signage and other markings to slow or stop traffic. The approach to designing crossings at mid-block locations depends on an evaluation of vehicular traffic, line of sight, pathway traffic, use patterns, vehicle speed, road type, road width, and other safety issues such as proximity to major attractions.

When space is available, using a median refuge island can improve user safety by providing pedestrians and bicyclists space to perform the safe crossing of one side of the street at a time.

Guidance
Maximum traffic volumes
- ≤9,000-12,000 Average Daily Traffic (ADT) volume
- Up to 15,000 ADT on two-lane roads, preferably with a median
- Up to 12,000 ADT on four-lane roads with median

Maximum travel speed
- 35 MPH

Minimum line of sight
- 25 MPH zone: 155 feet
- 35 MPH zone: 250 feet
- 45 MPH zone: 360 feet

Discussion
Unsignalized crossings of multi-lane arterials over 15,000 ADT may be possible with features such as sufficient crossing gaps (more than 60 per hour), median refuges, and/or active warning devices like rectangular rapid flash beacons or in-pavement flashers, and excellent sight distance. For more information see the discussion of active warning beacons.

On roadways with low to moderate traffic volumes (<12,000 ADT) and a need to control traffic speeds, a raised crosswalk may be the most appropriate crossing design to improve pedestrian visibility and safety.

Additional References and Guidelines

Materials and Maintenance
Locate markings out of wheel tread when possible to minimize wear and maintenance costs.
Active Warning Beacons

Description
Enhanced marked crossings are unsignalized crossings with additional treatments designed to increase motor vehicle yielding compliance on multi-lane or high volume roadways.

These enhancements include pathway user or sensor actuated warning beacons, Rectangular Rapid Flash Beacons (RRFB) shown below, or in-roadway warning lights.

Guidance
Guidance for Marked/Unsignalized Crossings applies.

- Warning beacons shall not be used at crosswalks controlled by YIELD signs, STOP signs, or traffic control signals.
- Warning beacons shall initiate operation based on user actuation and shall cease operation at a predetermined time after the user actuation or, with passive detection, after the user clears the crosswalk.

Discussion
Rectangular rapid flash beacons show the most increased compliance of all the warning beacon enhancement options.

A study of the effectiveness of going from a no-beacon arrangement to a two-beacon RRFB installation increased yielding from 18 percent to 81 percent. A four-beacon arrangement raised compliance to 88%. Additional studies of long term installations show little to no decrease in yielding behavior over time.

Additional References and Guidelines

Materials and Maintenance
Locate markings out of wheel tread when possible to minimize wear and maintenance costs. Signing and striping need to be maintained to help users understand any unfamiliar traffic control.
Route Users to Signalized Crossings

Description
Path crossings within approximately 400 feet of an existing signalized intersection with pedestrian crosswalks are typically diverted to the signalized intersection to avoid traffic operation problems when located so close to an existing signal. For this restriction to be effective, barriers and signing may be needed to direct path users to the signalized crossing. If no pedestrian crossing exists at the signal, modifications should be made.

Guidance
Path crossings should not be provided within approximately 400 feet of an existing signalized intersection. If possible, route path directly to the signal.

Discussion
In the US, the minimum distance a marked crossing can be from an existing signalized intersection varies from approximately 250 to 660 feet. Engineering judgement and the context of the location should be taken into account when choosing the appropriate allowable setback. Pedestrians are particularly sensitive to out of direction travel and jaywalking may become prevalent if the distance is too great.

Additional References and Guidelines

Materials and Maintenance
If a sidewalk is used for crossing access, it should be kept clear of snow and debris and the surface should be level for wheeled users.
Signalized/Controlled Crossings

Description

Signalized crossings provide the most protection for crossing path users through the use of a red-signal indication to stop conflicting motor vehicle traffic. The two types of path signalization are full traffic signal control and hybrid signals.

A full traffic signal installation treats the path crossing as a conventional 4-way intersection and provides standard red-yellow-green traffic signal heads for all legs of the intersection.

Hybrid beacon installation (shown below) faces only cross motor vehicle traffic, stays dark when inactive, and uses a unique 'wig-wag' signal phase to indicate activation. Vehicles have the option to proceed after stopping during the final flashing red phase, which can reduce motor vehicle delay when compared to a full signal installation.

Guidance

Hybrid beacons (illustrated here) may be installed without meeting traffic signal control warrants if roadway speed and volumes are excessive for comfortable path crossings.

Full traffic signal installations must meet MUTCD pedestrian, school or modified warrants. Additional guidance for signalized crossings:

- Located more than 300 feet from an existing signalized intersection
- Roadway travel speeds of 40 MPH and above
- Roadway ADT exceeds 15,000 vehicles

Discussion

Shared-use path signals are normally activated by push buttons but may also be triggered by embedded loop, infrared, microwave or video detectors. The maximum delay for activation of the signal should be two minutes, with minimum crossing times determined by the width of the street.

Each crossing, regardless of traffic speed or volume, requires additional review by a registered engineer to identify sight lines, potential impacts on traffic progression, timing with adjacent signals, capacity and safety.

Additional References and Guidelines

Materials and Maintenance

Hybrid beacons are subject to the same maintenance needs and requirements as standard traffic signals. Signing and striping need to be maintained to help users understand any unfamiliar traffic control.
Undercrossings

Description
Bicycle/pedestrian undercrossings provide critical non-motorized system links by joining areas separated by barriers such as railroads and highway corridors. In most cases, these structures are built in response to user demand for safe crossings where they previously did not exist.

Grade-separated crossings are advisable where existing bicycle/pedestrian crossings do not exist, where ADT exceeds 25,000 vehicles and where 85th percentile speeds exceed 45 miles per hour.

Guidance
• 14 foot minimum width, greater widths preferred for lengths over 60 feet.
• 10 foot minimum height.
• The undercrossing should have a centerline stripe even if the rest of the path does not have one.
• Lighting should be considered during the design process for any undercrossing with high anticipated use or in culverts and tunnels.

Discussion
Safety is a major concern with undercrossings. Shared-use path users may be temporarily out of sight from public view and may experience poor visibility themselves. To mitigate safety concerns, an undercrossing should be designed to be spacious, well-lit, equipped with emergency cell phones at each end and completely visible for its entire length from end to end.

Additional References and Guidelines

Materials and Maintenance
14 foot width allows for maintenance vehicle access.
Potential problems include conflicts with utilities, drainage, flood control and vandalism.
Overcrossings

Description

Bicycle/pedestrian overcrossings provide critical non-motorized system links by joining areas separated by barriers such as deep canyons, waterways or major transportation corridors. In most cases, these structures are built in response to user demand for safe crossings where they previously did not exist.

Grade-separated crossings may be needed where existing bicycle/pedestrian crossings do not exist, where ADT exceeds 25,000 vehicles, and where 85th percentile speeds exceed 45 miles per hour.

Overcrossings require a minimum of 17 feet of vertical clearance to the roadway below versus a minimum elevation differential of around 12 feet for an undercrossing. This results in potentially greater elevation differences and much longer ramps for bicycles and pedestrians to negotiate.

Guidance

8 foot minimum width, 14 feet preferred. If overcrossing has any scenic vistas additional width should be provided to allow for stopping. A separate 5 foot pedestrian area may be provided for facilities with high bicycle and pedestrian use.

10 foot headroom on overcrossing; clearance below will vary depending on feature being crossed.

Roadway: 17 feet
Freeway: 18.5 feet
Heavy Rail Line: 23 feet

The overcrossing should have a centerline stripe even if the rest of the path does not have one.

Discussion

Overcrossings for bicycles and pedestrians typically fall under the Americans with Disabilities Act (ADA), which strictly limits ramp slopes to 5% (1:20) with landings at 400 foot intervals, or 8.33% (1:12) with landings every 30 feet.

Overcrossings pose potential concerns about visual impact and functional appeal, as well as space requirements necessary to meet ADA guidelines for slope.

Additional References and Guidelines

Materials and Maintenance

Potential issues with vandalism.

Overcrossings can be more difficult to clear of snow than undercrossings.
Bicycle Support Facilities

Bicycle Parking
Bicyclists expect a safe, convenient place to secure their bicycle when they reach their destination. This may be short-term parking of 2 hours or less, or long-term parking for employees, students, residents, and commuters.

Access to Transit
Safe and easy access to bicycle parking facilities is necessary to encourage commuters to access transit via bicycle. Providing bicycle access to transit and space for bicycles on buses and rail vehicles can increase the feasibility of transit in lower-density areas, where transit stops are beyond walking distance of many residences. People are often willing to walk only a quarter- to half-mile to a bus stop, while they might bike as much as two or more miles to reach a transit station.

Roadway Construction and Repair
Safety of all roadway users should be considered during road construction and repair. Wherever bicycles are allowed, measures should be taken to provide for the continuity of a bicyclist’s trip through a work zone area. Only in rare cases should pedestrians and bicyclists be detoured to another street when travel vehicle lanes remain open. Contractors performing work should be made aware of the needs of bicyclists and be properly trained in how to safely route bicyclists through or around work zones.

This Section Includes:
- Bicycle Parking
 - Bicycle Racks
 - On-Street Bicycle Corral
- Bicycle Access through Construction Areas
- Bicycle Access to Transit
- Secure Parking Areas (SPA)

Bicycle Parking

Bicycle Access to Transit

Access through Construction Areas
Bicycle Racks

Description
Short-term bicycle parking is meant to accommodate visitors, customers, and others expected to depart within two hours. It should have an approved standard rack, appropriate location and placement, and weather protection. The Association for Pedestrian and Bicycle Professionals (APBP) recommends selecting a bicycle track that:

- Supports the bicycle in at least two places, preventing it from falling over.
- Allows locking of the frame and one or both wheels with a U-lock.
- Is securely anchored to ground.
- Resists cutting, rusting and bending or deformation.

Guidance
- 2’ minimum from the curb face to avoid ‘dooring.’
- Close to destinations; 50’ maximum distance from main building entrance.
- Minimum clear distance of 6’ should be provided between the bicycle rack and the property line.
- Should be highly visible from adjacent bicycle routes and pedestrian traffic.
- Locate racks in areas that cyclists are most likely to travel.

Discussion
Where the placement of racks on sidewalks is not possible (due to narrow sidewalk width, sidewalk obstructions, street trees, etc.), bicycle parking can be provided in the street where on-street vehicle parking is allowed in the form of on-street bicycle corrals.

Some types of bicycle racks may meet design criteria, but are discouraged except in limited situations. This includes undulating “wave” racks, schoolyard “wheel bender” racks, and spiral racks.

Additional References and Guidelines

Materials and Maintenance
Use of proper anchors will prevent vandalism and theft. Racks and anchors should be regularly inspected for damage. Educate snow removal crews to avoid burying racks during winter months.
On-Street Bicycle Corral

Description
Bicycle corral (also known as on-street bicycle parking) consist of bicycle racks grouped together in a common area within the street traditionally used for automobile parking. Bicycle corral is reserved exclusively for bicycle parking and provide a relatively inexpensive solution to providing high-volume bicycle parking. Bicycle corral can be implemented by converting one or two on-street motor vehicle parking spaces into on-street bicycle parking. Each motor vehicle parking space can be replaced with approximately 6-10 bicycle parking spaces.

Bicycle corral move bicycles off the sidewalks, leaving more space for pedestrians, sidewalk café tables, etc. Because bicycle parking does not block sightlines (as large motor vehicles would do), it may be possible to locate bicycle parking in 'no-parking' zones near intersections and crosswalks.

Guidance
See guidelines for sidewalk Bicycle Rack placement and clear zones.

- Bicyclists should have an entrance width from the roadway of 5' – 6'.
- Can be used with parallel or angled parking.
- Parking stalls adjacent to curb extensions are good candidates for bicycle corral since the concrete extension serves as delimitation on one side.

Discussion
In many communities, the installation of bicycle corral is driven by requests from adjacent businesses, and is not a city-driven initiative. In such cases, the city does not remove motor vehicle parking unless it is explicitly requested. In other areas, the city provides the facility and business associations take responsibility for the maintenance of the facility. Communities can establish maintenance agreements with the requesting business. Bicycle corral can be especially effective in areas with high bicycle parking demand or along street frontages with narrow sidewalks where parked bicycles would be detrimental to the pedestrian environment.

Additional References and Guidelines

Materials and Maintenance
Physical barriers may obstruct drainage and collect debris. Establish a maintenance agreement with neighboring businesses. In snowy climates the bicycle corral may need to be removed during the winter months.
Bicycle Lockers

Description
Bicycle lockers are intended to provide long-term bicycle storage for employees, students, residents, commuters, and others expected to park more than two hours. Long-term facilities protect the entire bicycle, its components and accessories against theft and against inclement weather, including snow and wind-driven rain.

Bicycle lockers provide space to store a few accessories or rain gear in addition to containing the bicycle. Some lockers allow access to two users - a partition separating the two bicycles can help users feel their bike is secure. Lockers can also be stacked, reducing the footprint of the area, although that makes them more difficult to use.

Guidance
- Minimum dimensions: width (opening) 2.5'; height 4'; depth 6'.
- 4 foot side clearance and 6 foot end clearance.
- 7 foot minimum distance between facing lockers.
- Locker designs that allow visibility and inspection of contents are recommended for increased security.
- Access is controlled by a key or access code.

Discussion
Long-term parking facilities are more expensive to provide than short-term facilities, but are also significantly more secure. Although many bicycle commuters would be willing to pay a nominal fee to guarantee the safety of their bicycle, long-term bicycle parking should be free wherever automobile parking is free. Potential locations for long-term bicycle parking include transit stations, large employers, and institutions where people use their bikes for commuting and not consistently throughout the day.

Additional References and Guidelines

Materials and Maintenance
Regularly inspect the functioning of moving parts and enclosures. Change keys and access codes periodically to prevent access to unapproved users.
Bicycle Access Through Construction Areas

Description
Wherever bicycles are allowed, measures should be taken to provide for the continuity of a bicyclist’s trip through a work zone area. Bicyclists should not be led into conflicts with work site vehicles, equipment, moving vehicles, open trenches, or temporary construction signage.

Efforts should be made to re-create a bike lane (if one exists) to the left of the construction zone. If this is impossible, then consider the closure of a standard-width travel lane to accommodate bicycle travel.

Guidance

Construction Signage
- Place in a location that does not obstruct the path of bicyclists or pedestrians.
- Detour and closure signs related to bicycle travel may be included on all bikeways where construction activities occur. Signage should also be provided on all other roadways.

Bicycle Travel around Steel Grates
- Require temporary asphalt (cold mix) around plates to create a smooth transition.
- Use steel plates only as a temporary measure during construction, not for extended periods.
- Use warning signs where steel plates are in use.
- Require both temporary and final repaving to provide a smooth surface without abrupt edges.

Discussion

Plates used to cover trenches tend to not be flush with pavement and have a 1”-2” vertical transition on the edges. This can puncture a hole in a bicycle tire and cause a bicyclist to lose control. Although it is common to use steel plates during non-construction hours, these plates can be dangerously slippery, particularly when wet.

Contractors performing work should be made aware of the needs of bicyclists and be properly trained in how to safely route bicyclists through or around work zones.

Additional References and Guidelines

Materials and Maintenance
Debris should be swept to maintain a reasonably clean riding surface in the outer 5 - 6 ft of roadway.
Bikeway Maintenance

Regular bicycle facility maintenance includes sweeping, maintaining a smooth roadway, ensuring that the gutter-to-pavement transition remains relatively flat, and installing bicycle-friendly drainage grates. Pavement overlays are a good opportunity to improve bicycle facilities. The following recommendations provide a menu of options to consider to enhance a maintenance regimen.

Recommended Walkway and Bikeway Maintenance Activities

<table>
<thead>
<tr>
<th>Maintenance Activity</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspections</td>
<td>Seasonal – at beginning and end of Summer</td>
</tr>
<tr>
<td>Pavement sweeping/blowing</td>
<td>As needed, with higher frequency in the early Spring and Fall</td>
</tr>
<tr>
<td>Pavement sealing</td>
<td>5 - 15 years</td>
</tr>
<tr>
<td>Pothole repair</td>
<td>1 week – 1 month after report</td>
</tr>
<tr>
<td>Culvert and drainage grate inspection</td>
<td>Before Winter and after major storms</td>
</tr>
<tr>
<td>Pavement markings replacement</td>
<td>As needed</td>
</tr>
<tr>
<td>Signage replacement</td>
<td>As needed</td>
</tr>
<tr>
<td>Shoulder plant trimming (weeds, trees, brambles)</td>
<td>Twice a year; middle of growing season and early Fall</td>
</tr>
<tr>
<td>Tree and shrub plantings, trimming</td>
<td>1 – 3 years</td>
</tr>
<tr>
<td>Major damage response (washouts, fallen trees, flooding)</td>
<td>As soon as possible</td>
</tr>
</tbody>
</table>

This Section Includes:

- Sweeping
- Signage
- Roadway Surface
- Pavement Overlays
- Drainage Grates
- Gutter to Pavement Transition
- Landscaping
- Maintenance Management Plan
Sweeping

Guidance
- Establish a seasonal sweeping schedule that prioritizes roadways with major bicycle routes.
- Sweep walkways and bikeways whenever there is an accumulation of debris on the facility.
- In curbed sections, sweepers should pick up debris; on open shoulders, debris can be swept onto gravel shoulders.
- Pave gravel driveway approaches to minimize loose gravel on paved roadway shoulders.
- Perform additional sweeping in the Spring to remove debris from the Winter.
- Perform additional sweeping in the Fall in areas where leaves accumulate.

Description
Bicyclists often avoid shoulders and bike lanes filled with gravel, broken glass and other debris; they will ride in the roadway to avoid these hazards, potentially causing conflicts with motorists. Debris from the roadway should not be swept onto sidewalks (pedestrians need a clean walking surface), nor should debris be swept from the sidewalk onto the roadway. A regularly scheduled inspection and maintenance program helps ensure that roadway debris is regularly picked up or swept.

Signage

Guidance
- Check regulatory and wayfinding signage along bikeways for signs of vandalism, graffiti, or normal wear.
- Replace signage along the bikeway network as needed.
- Perform a regularly-scheduled check on the status of signage with follow-up as necessary.
- Create a Maintenance Management Plan.

Description
Bike lanes, shared shoulders, Bicycle Boulevards and paths all have different signage types for wayfinding and regulations. Such signage is vulnerable to vandalism or wear, and requires periodic maintenance and replacement as needed.
Roadway Surface

Guidance
- Maintain a smooth pothole-free surface.
- Ensure that on new roadway construction, the finished surface on bikeways does not vary more than ¼”.
- Maintain pavement so ridge buildup does not occur at the gutter-to-pavement transition or adjacent to railway crossings.
- Inspect the pavement 2 to 4 months after trenching construction activities are completed to ensure that excessive settlement has not occurred.
- If chip sealing is to be performed, use the smallest possible chip on bike lanes and shoulders. Sweep loose chips regularly following application.
- During chip seal maintenance projects, if the pavement condition of the bike lane is satisfactory, it may be appropriate to chip seal the travel lanes only. However, use caution when doing this so as not to create an unacceptable ridge between the bike lane and travel lane.

Description
Bicycles are much more sensitive to subtle changes in roadway surface than are motor vehicles. Various materials are used to pave roadways, and some are smoother than others. Compaction is also an important issue after trenches and other construction holes are filled. Uneven settlement after trenching can affect the roadway surface nearest the curb where bicycles travel. Sometimes compaction is not achieved to a satisfactory level, and an uneven pavement surface can result due to settling over the course of days or weeks. When resurfacing streets, use the smallest chip size and ensure that the surface is as smooth as possible to improve safety and comfort for bicyclists.

Pavement Overlays

Guidance
- Extend the overlay over the entire roadway surface to avoid leaving an abrupt edge.
- If the shoulder or bike lane pavement is of good quality, it may be appropriate to end the overlay at the shoulder or bike lane stripe provided no abrupt ridge remains.
- Ensure that inlet grates, manhole and valve covers are within ¼ inch of the finished pavement surface and are made or treated with slip resistant materials.
- Pave gravel driveways to property lines to prevent gravel from being tracked onto shoulders or bike lanes.

Description
Pavement overlays represent good opportunities to improve conditions for bicyclists if done carefully. A ridge should not be left in the area where bicyclists ride (this occurs where an overlay extends part-way into a shoulder bikeway or bike lane). Overlay projects also offer opportunities to widen a roadway, or to re-stripe a roadway with bike lanes.
Drainage Grates

Guidance
- Require all new drainage grates be bicycle-friendly, including grates that have horizontal slats on them so that bicycle tires and assistive devices do not fall through the vertical slats.
- Create a program to inventory all existing drainage grates, and replace hazardous grates as necessary – temporary modifications such as installing rebar horizontally across the grate should not be an acceptable alternative to replacement.

Description
Drainage grates are typically located in the gutter area near the curb of a roadway. Drainage grates typically have slots through which water drains into the municipal storm sewer system. Many older grates were designed with linear parallel bars spread wide enough for a tire to become caught so that if a bicyclist were to ride on them, the front tire could become caught in the slot. This would cause the bicyclist to tumble over the handlebars and sustain potentially serious injuries.

Gutter to Pavement Transition

Guidance
- Ensure that gutter-to-pavement transitions have no more than a ¼” vertical transition.
- Examine pavement transitions during every roadway project for new construction, maintenance activities, and construction project activities that occur in streets.
- Inspect the pavement 2 to 4 months after trenching construction activities are completed to ensure that excessive settlement has not occurred.
- Provide at least 3 feet of pavement outside of the gutter seam.

Description
On streets with concrete curbs and gutters, 1 to 2 feet of the curbside area is typically devoted to the gutter pan, where water collects and drains into catch basins. On many streets, the bikeway is situated near the transition between the gutter pan and the pavement edge. This transition can be susceptible to erosion, creating potholes and a rough surface for travel.

The pavement on many streets is not flush with the gutter, creating a vertical transition between these segments. This area can buckle over time, creating a hazardous condition for bicyclists.
Landscaping

Guidance
- Ensure that shoulder plants do not hang into or impede passage along bikeways
- After major damage incidents, remove fallen trees or other debris from bikeways as quickly as possible

Description
Bikeways can become inaccessible due to overgrown vegetation. All landscaping needs to be designed and maintained to ensure compatibility with the use of the bikeways. After a flood or major storm, bikeways should be checked along with other roads, and fallen trees or other debris should be removed promptly.

Maintenance Management Plan

Guidance
- Provide fire and police departments with map of system, along with access points to gates/bollards
- Enforce speed limits and other rules of the road
- Enforce all trespassing laws for people attempting to enter adjacent private properties

Description
Bikeway users need accommodation during construction and maintenance activities when bikeways may be closed or unavailable. Users must be warned of bikeway closures and given adequate detour information to bypass the closed section. Users should be warned through the use of standard signing approaching each affected section (e.g., “Bike Lane Closed,” “Trail Closed”), including information on alternate routes and dates of closure. Alternate routes should provide reasonable directness, equivalent traffic characteristics, and be signed.